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CHAPTER 1.  INTRODUCTION 

 

Engineering design is an evolutionary process involving the creation of new 

products and the refinement of existing designs to obtain an optimal solution. A large 

body of research exists on the optimization of existing designs with a number of 

mathematical and computational techniques. However, the earlier stages of design, from 

conception to first functional solution, has received much less formal computational aid. 

This research seeks to develop a design environment and methodology capable of aiding 

engineers in the earlier stages of design, when large changes are the norm and a number 

of different options are being considered. 

 Virtual Reality (VR) serves as the basis for this methodology. Working in a 

virtual environment fosters a natural interaction with digital products, encouraging rapid, 

large design changes and easy investigation of results. Interference with existing 

geometry is often more quickly remedied, and alternative solutions are easy to explore. 

Collaborative design is another great benefit. It’s easy to have a number of designers and 

engineers working together within a large virtual environment.  

 This research ties the engineering analysis results to the shape design of products 

with real-time (roughly less than 1/15th of a second ) results in VR. Fast analysis 

approximations combined with stress interpolations let designers immediately see the 

effects of different product shapes. If analysis results are quickly approximated, more 

design options may be explored in a shorter time, making interactive design an important 

goal. 

 
Goals 

The work presented here seeks to improve on the interactive design 

methodologies 
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already in place. A virtual environment is generated using the VR Juggler software 

created at Iowa State University’s Virtual Reality Applications Center. Within that 

environment users may load a model, interact with it, and deform selected portions. 

Making this interaction with geometry in the virtual environment as effective and 

intuitive as possible is very important. Virtual reality is only a real benefit if it gives the 

designer greater freedom than the traditional desktop computer interface.  

Mesh-free analysis methods are used in place more traditional finite elements to 

avoid mesh distortion issues with deforming geometry. A custom analysis and solver was 

created to test the mesh-free methods with interactive design. However, the 

implementation is limited to a small class of problems and relatively untested. 

Implementing a more robust analysis with options for other material models and solution 

methods would be a great benefit to the existing methods. 

Seeing analysis results, such as stress patterns, update in real time is one of the 

most important characteristics of interactive design. It provides immediate feedback to a 

designer about the effects of product changes. Linear Taylor Series approximations are 

used here due to their speed, at the expense of accuracy for large design changes. Using 

these approximations requires computing the stress sensitivities for shape design 

sensitivity analysis. This process can be computationally expensive, which takes up time 

and decreases the interactivity of the process. Improving the speed and accuracy of the 

existing stress sensitivity calculations is important to improve the interactive design 

experience.  

Working with complicated and/or multiple objects in the virtual environment 

means a lot of information for a designer to process. The use of haptic or force feedback 

would provide an additional channel of information for the user about the design state. It 

also provides a convenient and more intuitive way to manipulate geometry. Implementing 
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a haptic device within the virtual environment could be a valuable tool for interactive 

design.  

 
Organization of Dissertation 

The above potential improvements were analyzed and implemented in a series of 

four papers that form the bulk of this dissertation. Four different areas were explored and 

actual improvements researched and implemented. Each major area forms the basis of 

one paper. 

In Chapter 2 a brief history of the interactive virtual design methodologies is 

covered along with the state of the application. The most limiting factors for interactive 

design in the virtual environment are enumerated, specifically those related to working 

with the mesh-free analysis models. Solutions for these areas are implemented and the 

results and benefits are presented.  

Chapter 3 presents the limitations of the custom mesh-free analysis tools created 

for immersive design. Alternatives are researched and compared with an emphasis on 

Open Source software solutions. The Tahoe analysis software, developed by Sandia 

National Labs, is selected as a replacement. Tahoe is integrated within the immersive 

design framework and compared with the custom analysis.  

In Chapter 4 one of the most significant limitations to interactive virtual design is 

presented: computing the stress shape design sensitivities for use in the Taylor Series 

approximations. Computing these sensitivities takes significant time, and must be done 

often as the user alters different geometry in the environment. In addition the 

approximations are only as good as the sensitivities calculated. To remedy this review is 

made of the existing options for design sensitivity analysis. A discrete derivatives 

technique with exact numeric differentiation is selected, implemented, and tested against 

the existing finite differences technique.  
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Chapter 5 presents the addition of haptic or force feedback to the virtual design 

environment. Different haptic devices are compared and a large PHANTOM arm is 

selected. The integration of networked haptics with the existing application is then 

explained. Presenting haptic feedback to a designer based on stress contours is not a 

straightforward task, so several different techniques are compared. A small pilot study is 

designed and run to help gain an understanding of the benefit haptics adds to these 

immersive virtual design methods. 

In Chapter 6 the software engineering aspect of the above work is discussed. 

Particular attention is paid to keeping the application fast and modular, supporting a 

number of different options depending on the task at hand.  

Finally, Chapter 7 presents a review of the conclusions and suggestions for future 

work. 
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CHAPTER 2.  INTERACTIVE MANIPULATION OF MESH-FREE 

MODELS IN VIRTUAL REALITY 

 
For submission to: The Journal of Mechanical Design 

Andrew Fischer, Judy M. Vance 

 

1. Introduction 

The mechanical design process involves both the creation of new products and the 

refinement of existing ones to produce an optimum design. Traditionally, designers create 

an initial product to solve a given problem and then analyze the stresses, strains, 

deformations, etc. the part will experience while in use. If these parameters exceed 

certain limits, the part is redesigned. An analysis is again performed, and the cycle 

continues until a satisfactory design exists. 

This evolutionary path to improving existing designs is frequently encountered by 

engineers in practical problems. Thus, a large quantity of research focuses on refining 

this improvement process with various mathematical and automated optimization 

techniques. In contrast the less frequently encountered, but highly critical, initial creative 

design process has seen much less attention and formal computational aid [1]. 

This work seeks to develop a methodology that aids this initial design process and 

the early stages of design, before a working solution exists. The goal is to couple 

computer models with analysis models while allowing shape and design changes to be 

performed in real-time within a three-dimensional virtual environment. For purposes of 

this document, real-time will be considered as roughly less than 1/15th of a second, a time 

increment below which most people are generally not able to visually distinguish discrete 

events, making for a visually smooth simulation. Providing this type of combined design 

and analysis environment with a minimum of restrictions should encourage the quick 

investigation of many possible shape and design changes and how they affect the final 

product performance and operation. Obtaining a better initial design will also aid the 

evolutionary product improvement process, making it faster and more straightforward. 
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A key component of these methods is the integration with virtual reality (VR). 

Working within a virtual environment provides the support for truly interactive design, 

where users can alter designs quickly while interpreting complex analysis results and 

evaluating the effects on a part or assembly of parts. A collaborative virtual environment 

allows groups of engineering designers and analysts to work together on fast interactive 

investigations of multiple part shapes early in the product design process. The more 

quickly and accurately analysis results can be approximated, the more options may be 

explored in a given time. By providing designers with quick and natural model 

interaction, the effects of shape and parameter changes on a part or assembly may be 

more easily evaluated. 

At the Iowa State University Virtual Reality Application's Center, a C++ program, 

referred to as the Interactive Virtual Design Application (IVDA), has been created to 

implement and test these methods. It combines computer aided design (CAD) geometry, 

engineering analysis results, real-time shape manipulation with fast analysis 

approximations, and haptic force feedback in a virtual environment. 

Another key to the methodology developed here is the use of mesh-free analysis 

methods in place of the traditional finite element methods commonly used in most 

engineering analysis software. Since large shape changes are expected from a designer 

working at the initial conceptual design stage, the analysis must be able to cope with 

these large changes without greatly degrading the results, and still be fast enough to 

approximate at real or semi real-time rates. A custom mesh-free method was 

implemented in the virtual reality program, based on a Reproducing Kernel Particle 

Method with Stabilized Conforming Nodal Integration for strain smoothing developed by 

Chen et al. [2]. 

However, one of the main challenges in working with a virtual environment is 

taking full advantage of  the freedom offered to a designer. Virtual reality represents a 

different paradigm than the traditional keyboard, mouse and monitor computer interface.  

Correspondingly, different interaction methods need to be used to avoid limiting the 

designer. This paper explores the interaction techniques implemented in the IVDA and 

some of the benefits they provide. 
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This paper presents the background and research leading to the development of 

this program. Limitations of the existing application are then explored, followed by the 

specific techniques used to improve interaction with the virtual environment and their 

effectiveness. 

 

2. Background on interactive design in virtual reality 

The basis for this research began with Yeh and Vance, who presented a method to 

perform interactive stress analysis in virtual reality. They used linear Taylor series 

approximations based on pre-computed stress sensitivities and a rectangular Non-

Uniform Rational B-Spline (NURBS) bounding volume to deform the part shape [3]. 

Using the linear Taylor series approximations require stress values (σ) and the 

first derivatives of these stresses with respect to some design variable (h), in this case the 

object shape. This derivative is referred to as the stress sensitivity for shape design 

variables. Using this information, and the change in the design variable (h), one can 

interpolate new stress values (σ’) using equation 1 as shown. 

 

h
dh
d

∆+=′
σσσ eq. 1 

This process, however, is limited by the low accuracy of the Taylor series stress 

approximations for large design changes and the need to perform a stress and sensitivity 

analysis before the virtual reality interaction could begin. The method also required the 

design area and bounding volume to be identified beforehand, limiting the freedom to 

interactively explore alternate designs. Figures 2.11 and 2.2 below shows a connection 

rod with its thickness being altered by this method while the stress levels change 

accordingly. 
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Figure 2.1. Initial configuration of a connecting rod with bonding volume visible. 

 

Figure 2.2. Deformed connecting rod with Taylor series stress approximations. 

 

In the next stage, Ryken and Vance used a projection screen virtual environment 

to apply these techniques to a practical engineering problem, the design of a tractor rear 

lift arm [4]. This particular part experienced excessively high stress levels while in use, 

but it was difficult to alter its shape without interfering with the rest of the complicated 

lift assembly. Using the immersive virtual environment with real time stress 

approximations made it easy to explore the arm design and find a shape that decreased 

stress concentrations to acceptable levels while avoiding interference with the assembly. 

However, the method still required the user to determine the “changeable” area and 

bounding volume before the application was started, greatly limiting its flexibility. Figure 

2.3 shows the lift arm in VR.  

 



www.manaraa.com

9

Figure 2.3. A tractor lift arm in virtual reality. 

 

To further improve the immersive design process, Chipperfield, Yeh and Vance 

made two important additions. First, a reproducing kernel mesh-free method with strain 

smoothing stabilization was implemented to compute the analysis results. Second, a pre-

conditioned conjugate gradient (PCG) re-analysis was added in addition to the existing 

Taylor series approximation to rapidly and accurately compute the stress contours 

resulting from shape changes [5].  

 

2.1. Mesh-free analysis method 

 Generally, large changes in part shape and size cause traditional finite element 

methods (FEM) to suffer greatly from mesh distortion errors unless the mesh is 

reconstructed. Since reanalysis speed after part deformation is very important in this 

research, which attempts to make the interactive design as close to real-time as possible, 

it is very desirable to avoid the computationally expensive re-meshing process. This lead 

to the selection of mesh-free methods to solve for analysis results, as large geometry 

changes are an important goal in this research. The selected implementation was a 

reproducing kernel particle method with strain smoothing stabilization, introduced by 

Chen et al [2]. 

 Mesh-free methods are in many ways similar to traditional FEM, except that the 

displacement approximations are given entirely in terms of the mesh-free nodes, so no 

element meshes are necessary [6]. This avoids the mesh distortion issue altogether. The 
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reproducing kernel is used to approximate unknown displacements in terms of the 

displacement coefficients at the mesh-free nodes.  This relationship is shown in equation 

2, where uh(x) is the displacement, ΨI(x) is the reproducing kernel shape function 

evaluated at the point x, with respect to the I th node, and dI are the displacement 

coefficients. 

 

1
( ) ( )

N
h

I I
I

u dΨ
=

=∑x x  eq. 2 

These kernel functions are not interpolating, so the displacement at a nodal point 

is not equal to the value of the displacement coefficient at that node. This makes 

displacement boundary conditions more difficult to apply in mesh-free methods. 

 As mentioned, the implementation used here is a reproducing kernel particle 

method (RKPM) with stabilized conforming nodal integration (SCNI). This SCNI acts as 

a strain smoothing approximation to eliminate spurious strains that arise from direct 

nodal integration of the RKPM equations.  

If we let the strain at node xL in terms of the displacement coefficients be given by 

equation 3 where hε (xL) is the strain at node L, we then need: GL, a group of nodes that 

have shape functions with support covering the nodal region of node L; BI, the smoothed 

strain gradient matrix; and dI, the vector of displacement coefficients for node I.

( ) ( )
L

h
L I L I

I G∈

= ∑x B x dε eq. 3 

The smoothed strain gradient matrix is then given by the following three equations: 

 

1

2

2 1

( ) 0
( ) 0 ( )

( ) ( )

I L

I L I L

I L I L

b
b

b b

 
 =  
  

x
B x x

x x
 eq. 4 
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1 1
1( ) ( ) ( )

L

I L I L
L

b n d
A Γ

Ψ Γ= ∫x x x  eq. 5 

2 2
1( ) ( ) ( )

L

I L I L
L

b n d
A Γ

Ψ Γ= ∫x x x  eq. 6 

Here AL is the area of the nodal region ( LΓ ) at node L and n(x) is the normal 

vector to the boundary of the nodal region.  The smoothed gradient matrix for node L is 

composed of integrals around the nodal region of node L multiplied by the area of the 

nodal region at node L, denoted AL. Using SCNI requires one of these nodal regions to be 

associated with each mesh-free node in the geometry. In this work the problem of 

obtaining these regions was solved by using an already constructed FEM mesh as the 

basis for the mesh-free analysis, which also serves as a convenient way to import models 

into an application. 

 An initial finite element model, generated from an external analysis package, is 

used to define the geometry and to place the mesh-free nodes. By placing one mesh-free 

node per element, the existing element boundaries may be used as nodal regions for the 

SCNI. Since the mesh-free method doesn't require uniform nodal spacing for accuracy, 

regions on the edge of a model have the node placed on the region edge, while those 

within the model have the node placed in the middle. An example mesh-free node 

placement scheme appears in figure 2.4, where the cells indicate the original FEM 

geometry and the visible nodes are for the mesh-free analysis. 
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Figure 2.4. Mesh-free node placement in FEM model 

 

2.2. Iterative PCG re-analysis 

 In order to make these interactive design methods truly practical they must be 

fast, reasonably accurate, and permit an engineer full freedom to explore design 

possibilities. This becomes even more important when trying to work in virtual reality, as 

the effectiveness of an application depends on real-time interaction [7].  

 Since analyzing a model is the slowest portion of this process, Chipperfield et al. 

implemented a pre-conditioned conjugate gradient (PCG) re-analysis to rapidly and 

accurately compute the stress contours resulting from design changes [8]. 

Solving the mesh-free equations require solving a linear system analogous to the 

finite element method: 

 

Kd = f eq. 7 

 

Here K is the sparse, square stiffness matrix, d is the vector of displacement 

coefficients, and f is the right hand side force vector. Once the design has been altered by 

deforming the geometry, a new system is formed:  

 

K* d* = f* eq. 8 

When using the PCG method for a reanalysis, the system has already been solved 

once for the full analysis. Hence the solution to the initial design is known (K-1). If the 
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design hasn’t been drastically changed, the K* matrix for the modified design is similar 

to the initial K matrix.  Because of this similarity, K-1 makes an excellent pre-conditioner 

to solve equation 8 with the PCG method.  This technique seems to converge quickly, 

even for relatively large design changes. 

 This results in a two-stage process to compute stress contours while a model is 

being deformed in virtual reality, once the initial analysis is complete. Taylor series 

approximations are used for fast real-time stress updates while the more accurate, but 

slower, preconditioned conjugate-gradient re-analysis calculates stress levels when 

accuracy is important.  

 The goal is to balance the tradeoffs between real-time analysis results with a 

reasonably accurate solution necessary for design. Stress sensitivities are computed with 

a simple finite difference method that perturbs the selected portion of the model and 

resolves the problem. Though it lacks accuracy beyond small geometry changes, the 

Taylor series is fast enough to update the stress pattern in real time, allowing the designer 

to see the contour change as the model shape is altered. When more accurate results are 

needed, or a user wishes to modify other portions of the model, the pre-conditioned 

conjugate gradient re-analysis is performed on the model. This method computes a more 

accurate stress pattern and provides new stress sensitivities for the Taylor approximation. 

 

2.3 Limitations 

 The application as described above provides mesh-free analysis of single 

engineering parts with fast Taylor Series approximation for stress pattern changes, free-

form deformation, and an iterative Preconditioned Conjugate Gradient method for more 

accurate, albeit more computationally expensive, reanalyses. However, while it 

demonstrates several powerful concepts, certain limitations prevent the program from 

being a practical design tool.  

 To allow the designer as much freedom as possible in the virtual environment, 

he/she should be able to rapidly shape change different portions of the model geometry. 

In the work presented above, the bounding volumes used for free-form deformation must 

also be defined with external software, or by hand in an input file, and loaded into the 
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virtual environment. This is unacceptable, as the designer needs maximum freedom to 

explore different design shapes.  

 The engineering design process is rarely concerned with a single model by itself. 

Typically, parts need to be seen in the context of their surrounding geometry, which can 

influence and interfere with the changing design. To meet this requirement multiple 

analysis models with collision detection and methods to prevent geometry 

interpenetration are needed.  

 Finally, quickly understanding the analysis state of a model, let alone several 

models in the design space, is a challenging task with all of the information available for 

the designer to consider. It makes sense to explore additional channels of information 

feedback available to the user in the virtual environment. One possibility is the use of 

force or haptic feedback to allow the user to “feel” the changing stress state of a model.   

 The above limitations are considered and improved upon in the following section, 

along with an update outline of the IVDA program. 

 

3. Interactive design methods 

 As stated, the primary goal of this work is to provide a designer with the 

maximum freedom to rapidly modify the analysis geometry in a virtual environment and 

interpret the results. The sections below detail the most significant ways this interaction is 

achieved.  

 

3.1 Working in Virtual Reality 

 The IVDA application is brought into virtual reality using VR Juggler, an open 

source software library developed at Iowa State University Virtual Reality Applications 

Center.  VR Juggler provides the framework for programs to run on a wide variety of 

virtual reality devices, from multi-screen projection environments to simple head 

mounted displays; or even in simulation mode on a standard desktop computer [9].  

 These methods were designed to be applied in a large projection screen 

environment, since it provides a user the most freedom to explore and alter the geometry 

and visualize results. Examples of such systems include the C6 at Iowa State University 
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[10], and commercially available systems such as the FLEX from Fakespace systems 

[11]. Interaction is achieved via a tracked wand, which the designer uses to make 

decisions and manipulate geometry. An interactive menu system was implemented, 

permitting the user to rapidly move between the different program options. Since the 

menus are a full 3d object, they may be positioned with total freedom in the virtual 

environment.  

 Originally the exclusive realm of large multiprocessor graphics workstations, 

large projection screen virtual reality has recently begun making extensive use of lower 

cost alternatives, such as synchronized clusters of high-end PC’s. The IVDA has 

followed this evolution, taking advantage of the opportunities for parallel processing 

across a networked cluster. The mesh-free solver, originally written using SGI specific 

numeric routines for calculation, was re-factored to work with the cross-platform 

SuperLU software [12]. SuperLU provides the direct solution of large, sparse systems of 

linear equations on high performance computers. The SuperLU_DIST version of the 

software permits parallel processing on distributed memory parallel computers, just like 

those found in a VR cluster.   

3.2 Free-form deformation 

 To alter part geometry in the virtual environment, a form of subdivision volume 

free form deformation (FFD) is used in the application. Free form deformation is based 

on Non-Uniform Rational B-Spline or NURBS modeling [13]. Here, Catmull-Clark 

subdivision volumes are applied as an extension to free-form deformation techniques. 

This allows more variety and flexibility in defining the control volume around the part 

where shape deformations are allowed than standard NURBS-based free form 

deformation [14]. 

 Using this type of free form deformation provides a useful way to manipulate 

geometry in the virtual environment. A volume is defined around the portion of the 

geometry to be changed by placing a series of control points in the 3D space surrounding 

the part. Once complete, a series of subdivisions are performed on the control point 

volumes to produce a smoother shape. The part geometry is mapped to the subdivided 
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volume, allowing the shape to be changed by manipulating the different control points. 

Designers in VR need only grab and move these controls points making for a natural 

interaction method.  

 However, defining the initial bounding volume or volumes while in VR is not a 

trivial task. A number of different options were considered to replace loading the volume 

from a file, including: 

1. Placing the volume points one by one.  

2. Placing a single volume and extruding surfaces to create more 

3. Dropping in bounding boxes individually and linking them together 

4. Using the wand to “rubberband” a box around the portion of the model and 

subdividing it into smaller boxes 

These different techniques were implemented and tested in the application for usability. 

A summary of the findings are as follows: 

 Placing the points one by one is a tedious operation in the virtual world. Building 

a single bounding box requires 8 different point selections, and at least 4 more for each 

additional box. It is also difficult to tell what portions of the model are being covered 

until the volume is complete, so point positions must usually be improved individually 

after the fact.  

 Extruding a single volume is easier than placing individual points. The volume 

may be positioned and scaled as desired. Repeatedly extruding surfaces to produce 

several control points for fine deformation control, however, still takes plenty of time and 

often results in uneven volumes that require additional point movement. If the user wants 

to change the control point density in a certain area, he/she is required to manually shift a 

series of bounding box planes about. 

 Linking bounding volumes together to cover the areas of interest is faster than 

extruding, but still becomes a challenge when the user wants multiple control points in all 

3 coordinate directions. A large number of boxes need to be linked, and it can become 

difficult to tell what kind of overall volume has been built, as the appearance is quite 

confusing. 

 Rubberbanding a single bounding box around the whole area of interest is the 

fastest way by far. The user simply selects two points in space. A changing volume 
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follows the wand once the first point is selected (and the wand orientation noted for 

volume orientation) until a second is placed. To change the control point density, the 

volume may be repeatedly subdivided in any of the box’s local coordinate directions.  

This makes it very easy to add a large number of control points for fine grained 

model deformation. Multiple rubberbanded volumes may be used on a single model as 

well, in case several areas of interest arise. Note that this technique’s subdivisions are 

distinct from the subdivision surface operations used to embed the model in the bounding 

volumes.  

 The rubberband/subdivide technique was selected for use in the IVDA after 

testing indicated it’s simplicity and speed advantages. Subdivided bounding volumes 

placed around a simple model appear in Figure 2.5 below. 

 

Figure 2.5. Subdivided bounding volumes around a model in the virtual environment 

 

3.3. Collision detection 

 Since the advantages of doing interactive design are even more apparent when 

working with a large assembly of models in VR, detecting and handling collisions 

between the many models is critical. Along with the more typical uses for collision 
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detection, in the IVDA the designer should be prevented from changing a model's 

geometry to pass through another part in the assembly. Selecting a collision detection 

technique was guided by some requirements that are specific to interactive design.  

 Speed is of primary importance to keep the application in real-time. While most 

collision detection problems are concerned with many solid or rigid bodies colliding with 

one another, this research is primarily concerned with collisions between deforming 

models as they change shape, to avoid passing though other geometry. Such deforming 

model collisions should be checked for without rebuilding the entire collision detection 

structure as this is typically an expensive computation. Finally, since the mesh-free 

analysis of large models can use a substantial portion of the available computer memory, 

efficient use of memory by the collision detection routines is another important issue.  

 Working within these constraints led to the selection of the OPCODE collision 

detection library (OPtimized COllision DEtection) for this research. With routines based 

on the well-known RAPID package, OPCODE was authored by Pierre Terdiman to be a 

more memory efficient implementation [15]. OPCODE has proved popular in computer 

game development with physics engines such as the Open Dynamics Engine (ODE), 

where speed and efficient memory use are critical [16].  

 OPCODE provides fast collision detection between non-convex polygonal models 

with a memory footprint many times smaller than similar packages such as SOLID and 

RAPID [17]. OPCODE has recently added support for colliding deforming polygonal 

models without rebuilding the entire collision detection structure, making it a natural 

choice for this work, since deforming model collision queries are so important.  

 Integration was provided by creating a translator to convert the application's 

analysis model to an OPCODE collision model. Since the original geometric model is a 

finite element mesh, and OPCODE performs collision queries on a per-triangle basis, the 

conversion is straightforward. Pointers to the original model's nodal coordinates are 

maintained, so as the shape is altered by interactive design the OPCODE model updates 

accordingly.  

 Collisions are reported back to the designer by preventing further model 

movement or deformation. Since OPCODE reports the collision triangles and normal 
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direction, it is also possible to indicate the specific collision location, useful for 

complicated models or assemblies.  

 

3.4. Haptic feedback 

 Haptics, or force feedback, refers to the application of touch sensation and control 

to human-computer interaction applications, allowing users an additional channel of 

information in a simulation. In the framework of this research project, haptics is being 

used as an experimental tool to provide designers with information about the stress state 

of a part as it is deformed in virtual realty. A PHANTOM haptic device, originally 

developed as a low-cost desktop tool, is used to generate this force feedback [18]. 

 Since the PHANTOM is primarily a desktop device with a physical workspace 

much smaller than the interior of most virtual environments, a mapping was developed to 

use the phantom over an arbitrarily large portion of the virtual space [19]. The user 

simply defines a workspace bounding volume around the virtual environment area of 

interest while an algorithm maps the PHANTOM physical motion to the virtual space, 

with a virtual PHANTOM endpoint displaying the PHANTOM location. This permits the 

user to work in areas ranging from a small section of the environment (even smaller than 

the haptic device workspace) to the entire virtual world.  

 Force feedback is sent to the user when the virtual endpoint is used to manipulate 

a control point of the FFD volume, deforming the model and changing the stress pattern. 

By altering the force required to manipulate the control point based on a weighting of the 

stresses in the model, the user receives additional information about how the stress levels 

are affected by part shape changes that may not immediately be visually noticeable. 

Haptics, combined with collision detection routines, can also be used to prevent the user 

from deforming the part further if another model is struck or a certain value of stress is 

exceeded. Haptic may even replace the wand for most application interaction, such a 

point selection or moving models about the environment. 

 Since haptic control loops require high update rates (~1000 Hz) for stability, Kim 

and Vance presented a method where the haptics and PHANTOM control are executed 

on a separate haptic computer, which is networked to the computer(s) driving the VR 
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simulation [20]. The haptic computer then maintains a complete and separate simulation 

from that of the VR system, and the necessary data is exchanged to keep them both up to 

date. Keeping the haptic process separate and communicating via TCP ensures the 

necessary high update rates, and it allows the PHANTOM setup to be more portable, as it 

only requires a network connection. 

 This design is particularly well suited to the interactive design application, since 

only a small amount of data actually needs to be transferred between simulations once 

they have both been started, specifically the location of the PHANTOM endpoint and the 

force value based on the stress patterns. Maintaining haptic update rates are thus not a 

problem. Figure 2.6 shows a PHANTOM haptic device in the C6 virtual environment.  

 

Figure 2.6. A PHANTOM inside the C6. 

 

4. Application sample use  

 An intuitive environment for observing the effect of shape changes on stress 

distributions has been presented in its current state. Using the program is straightforward, 

as per the following example. 
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Model information, boundary conditions, and material properties are stored in an 

XML file. This file is created from an ABAQUS input file by the program or by a user. 

Once the program is running, a model is selected from those available and loaded into the 

VR environment. The application performs an initial stress analysis and sensitivity 

calculation for selected control points. A user then defines a bounding volume around the 

part as the allowable deformation area. From there a designer can use the wand or the 

PHANTOM to modify the model, select different control points, change bounding 

volumes, and explore the shape change effects on the part in question.  

The application has the option to display different contours based on Von Mises 

stress, maximum shear, etc. as in a standard finite element software package. Multiple 

models may be loaded into the environment, properly positioned, and each analyzed in 

turn. Collision detection and haptic feedback may be turned on or off as needed. Figure 

2.7 provides a diagram of typical program operation. 

 

Figure 2.7. Flowchart for program operation 

 

5. Conclusions 

 The application as described works well with multiple models, large shape 

changes and linear elastic analysis. Improvements to the interaction methods make it easy 
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for a designer to quickly alter a number of different models and immediately observe the 

effects, all within a virtual environment. The addition of haptic feedback provides a novel 

interaction method worthy of additional research.  
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CHAPTER 3.  FAST MESH-FREE REANALYSIS WITH OPEN SOURCE 

SOFTWARE FOR VIRTUAL DESIGN 
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1. Introduction 

 The evolutionary process of mechanical design typically requires many iterations 

on an initial design achieve an acceptable or optimal solution. Modern advances in 

computer aided design, analysis, and optimization have led to a substantial amount of 

research in speeding and automating this process. However, the early stages of 

engineering design, where no initial design of any form exists, has seen far less attention 

and rigorous computational aid [1].  

 At the Iowa State University Virtual Reality Application's Center, an Immersive 

Virtual Design Application (IVDA) has been created to develop methods for aiding the 

initial design process. Computer aided design (CAD) geometry, engineering analysis 

results, real-time shape manipulation, fast analysis approximations, and force feedback 

are combined into a virtual workspace for designers. Working a virtual reality provides a 

truly interactive design space, where geometry may be quickly altered and complex 

analysis results interpreted. Collaboration is another important benefit of VR, since it lets 

groups of engineering designers and analysts to work together on the same products at the 

same time.  

In this research, mesh-free analysis methods are used in place of more traditional 

finite elements to help deal with the large shape design changes expected from a designer 

working within the freedom of a virtual environment. A custom mesh-free method was 

implemented in the IVDA, based on a Reproducing Kernel Particle Method with 

Stabilized Conforming Nodal Integration for strain smoothing developed by Chen et al. 

[2]. 
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However, while suitable as a proof of concept tool, implementing a custom 

mesh-free analysis makes it very difficult to deal with the wide variety of engineering 

problems and analysis types that could be encountered by a designer, due to the sheer 

number of different analysis options that must be available. A more suitable alternative 

would be to combine the aforementioned virtual reality application with some external 

analysis software that supports mesh-free analyses and blends well with the existing 

program.  

 An intriguing option for the external analysis is the use of Open Source Software 

(OSS). Open Source refers to any software released under a license conforming to the 

Open Source Definition (OSD). Such a license must meet the following conditions: 

1. The source code is available 

2. The software is re-distributable 

3. The software must be modifiable 

4. The license must not discriminate against any users or field 

5. The license must apply to all parties with the software 

6. The license cannot restrict aggregations of software 

The last 10 years have seen a significant growth of Open Source software as a viable 

alternative to commercial products in many areas, since OSS has been shown to quickly 

and inexpensively produce high quality software [3]. High profile examples include the 

Linux kernel and the Apache web server.  

The remainder of this paper will cover a review of potential analysis software, 

both commercial and open source, for use with the application.  The selection process is 

detailed, and the implementation and testing of the Tahoe analysis package with the 

current application is presented [4]. 

 

2. Software review 

 The application described above works well when applied to large shape changes 

with linear elastic analysis. However, relying on the linear elastic case presents a serious 

limitation when attempting to solve real world engineering problems, where material 

models and loading conditions require a more advanced analysis. Integrating external 
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analysis software with the existing application could provide a highly practical solution, 

if certain conditions are met. 

 To determine the best analysis software to integrate with our program several 

criterions were selected. The package that best met these criterions would then be 

selected for implementation and testing against our current analysis. These criterions 

include: 

• Support for mesh-free analysis methods. While these interactive design methods 

have used traditional finite elements, the use of mesh-free methods with large 

geometry changes has proven beneficial in the project thus far, and dropping them 

would make the mesh distortion/re-meshing a problem. 

• Support PCG reanalysis. While many software packages support the PCG method 

as a nonlinear analysis option, using it for our reanalysis method has some specific 

requirements [5]. Providing direct access to the matrix equations in the solver 

would permit great flexibility here. 

• Provide fast access to data, both input to and output from the analysis process. This 

is important since a potentially large amount of data needs to be shared between the 

VR program and the analysis software. File I/O should be avoided, especially for 

the reanalysis process, since it can be large performance bottleneck.  

• Support a wide variety of material models and analysis types. 

• Well documented 

 

A number of different analysis software was examined as a potential alternative to 

our current methods. A brief overview of several investigated packages follows. The 

packages are, for convenience, divided into commercial offerings and Open Source 

alternatives.  

 

2.1. Commercial analysis software 

 These commercial packages were investigated to compare them with each other 

for use with our interactive design methods. As commercial offerings, they are assumed 

to be robust, well documented, and supplied with a large number of material models and 
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solver options. The focus is on whether they provide any mesh-free analysis methods and 

what kind of data access/scripting interface they provide. 

 ABAQUS, by ABAQUS, Inc, is an advanced finite element analysis software 

package. It supports a wide range of material models, element types, and analysis options 

[6]. It is also currently used to generate input files for the interactive design program, so 

its familiarity would make it easier to integrate with our application. ABAQUS provides 

a python scripting language for creating models, submitting jobs, writing input files, and 

obtaining output. A C++ interface exists as well, though it only permits I/O with the 

output database. In the version examined (6.5), however, ABAQUS does not provide 

support for mesh-free analysis methods.   

 ANSYS, Inc's finite element software boasts many elements, material models, and 

“the most comprehensive set of solvers” [7]. A scripting interface exists using the Tcl/Tk 

language. However its main use appears to be GUI development and extension. Access to 

program analysis data is more limited. Mesh-free methods also do not appear to be an 

option with any module. 

 LS-DYNA is provided by the Livermore Software Technology Corporation 

(LSTC), and is a “general purpose transient dynamic finite element analysis program” 

[8]. LS-DYNA has many elements, materials, and solvers; plus it runs on a large number 

of different hardware platforms and operating systems. In addition, recent versions 

support mesh-free analysis methods [9]. Little information, however, is provided on 

scripting languages or other interfaces.  

 FieldMagic is provided by Intact Solutions, LLC., and is a commercial offering 

based on the SAGE software developed by Shapiro, et al. [10]. It is interesting in that is it 

a completely mesh-free analysis tool. FieldMagic supports thermal, vibrational, and 

structural analysis modes [11]. However, it is currently a two-dimensional tool, so it isn't 

as useful given the three-dimensional nature of the interactive design process. 

 Overall both ABAQUS and LS-DYNA are attractive options. ABAQUS due to 

the flexibility provided by its scripting interfaces and the author's existing familiarity, and 

LS-DYNA due to the presence of mesh-free analysis methods. Still, each appears lacking 

in at least one area, and in general the choice of a commercial package places great 
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restrictions on the ability to add functionality to the software or directly access additional 

analysis data beyond what is provided. The advantages of this low level access make 

Open Source packages an attractive alternative. 

 

2.2 Open source analysis software 

 Finding generally useful open source analysis packages can be difficult, due to the 

large number of outdated, partially finished, or highly specialized choices. However, 

since they provide direct access to the program’s source, any information about the 

analysis is readily available making them easy to integrate with the interactive design 

application. A search of academic literature was made, as well as Internet compilations 

such as the open directory [12]. The focus was on finding software that is reasonable 

popular, actively developed, and supports some form of mesh-free analysis. A sample of 

the more relevant programs follows. 

 The Impact project is hosted on sourceforge.net, a popular repository of open 

source software, and provides a free explicit dynamic finite element program [13]. It is 

mainly designed for dynamic events involving large deformations. Impact supports three-

dimensional analyses, and is an active project, though development has slowed recently. 

Impact does not provide any mesh-free methods, and is written in Java, while the 

interactive design application uses C++. 

 Calculix is a three-dimensional finite element program for structural analysis. It 

handles static, dynamic, and thermal analyses. Calculix also supports loading ABAQUS 

input files. Their site also showcases some impressive examples [14]. However, only a 

few developers seem to have contributed to the project. There is no mesh-free support, 

and it is difficult to determine how actively the project is developed or maintained. 

 Tahoe is a “research-oriented, open source platform for the development of 

numerical methods and material models” with a goal toward “the simulation of stresses 

and deformations for situations that cannot be treated by standard continuum simulation 

techniques” [15]. Tahoe provides support for mesh-free methods, including a 

Reproducing Kernel Particle Method similar to the one implemented in the interactive 

design application. Tahoe is quite actively developed, and provides extensive 
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documentation as well as a user's forum for questions. This documentation, combined 

with the program's clean structure, make the source code easy to understand and modify. 

 Among the open source packages surveyed, Tahoe was the clear leader. Its 

support for mesh-free methods for 3D problems and clean C++ design would make it 

easy to integrate with the interactive design application. And since it is actively 

developed and used, its methods are anticipated to be robust and accurate. 

 

2.3 Selection 

 After analyzing each software package according the stated criterions, the 

decision was made to integrate Tahoe with the interactive design application. While both 

ANSYS and LS-DYNA are attractive options, if Tahoe provides sufficiently fast and 

robust methods for our application, it's ease of integration and open code would make it 

an excellent choice. Following the Open Source development model, any changes or 

improvements to Tahoe could be submitted back for implementation in the main project 

code base, benefiting both applications. The follow section details the integration of 

Tahoe with the existing interactive design application. 

 

3. Integrating Tahoe 

 To implement Tahoe as a portion of the application, it is helpful to examine the 

structure of both programs. The interactive design application is created around a core 

class that uses VR Juggler to drive the virtual environment. Other program modules 

handle different tasks such as menu interaction within VR, file I/O, and free form 

deformation. Model geometry and mesh-free node information is stored in a manager, 

while the mesh-free solver uses the SuperLU software [16], to actually solve the matrix 

equation, and provides the PCG method for fast reanalysis. The Taylor series 

approximations to stresses are fairly trivial to compute once sensitivities have been 

obtained by the solver, so they are handled separately as the model is deformed. A simple 

diagram of the application appears in figure 3.1. 
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Figure 3.1. Interactive design application structure 

 

The design of Tahoe is similar in some ways. The overall program is controlled 

by a tahoe-manager, which provides communication and exception checking. Individual 

managers control and manipulate different data, such as the elements in the element 

group, or the solver, which equilibrates system of matrix equations. Full details appear in 

the Tahoe User's Guide, which accompanies the software. Figure 3.2 demonstrates this 

structure, and shows some similarities to the interactive design program.  
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Figure 3.2. The structure of Tahoe 

Courtesy of the “Tahoe Users Guide” 

 

3.1 Implementation 

 There were two goals guiding this integration: 1. Make the use of Tahoe 

indistinguishable from the original mesh-free solver to the rest of the application. 2. 

Minimize any changes to the Tahoe software itself. Since Tahoe is an open source 

application, it was possible to examine the program code to determine the best integration 

method and use that code as a guide. 

 The first step was to create an interface between Tahoe and the interactive design 

application. This interface, called the tahoe solver, replaces the mesh-free solver module 

in figure 7, and provides the same interface methods to the application. The tahoe solver 

takes a model, including geometry, material properties, and boundary conditions, from 

the model manager and formats them in a structure Tahoe understands. Updated model 

shapes from the free form deformation are passed directly into the Tahoe model, as well 

as any changes to model properties. Information from the Tahoe analysis, such as the 

resulting stress tensors, is then returned to the application. This avoids the use of any file 

I/O during the reanalysis process.  

 Since Tahoe is designed to be command line driven, some additional work is 

needed to control it from the interactive design application's tahoe solver module. This 

was accomplished by extending the tahoe manager class to create a custom manager. The 

custom manager has all the functionality of the original tahoe manager, but it provides 
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additional accessor methods to the underlying Tahoe data, and receives commands 

directly from the solver module.  

 While it was desirable to avoid changing the Tahoe source code, there were some 

areas where it was necessary to access internal information. These changes were the 

addition of simple accessor methods to the relevant class files. The GNU “patch” 

command is used to apply these additions to Tahoe automatically, so they may be easily 

added to updated Tahoe versions.  

 

3.2 Input and output 

 Typically a Tahoe analysis requires two files, a geometry file and an XML input 

file. The geometry file contains all the information for a finite element model such as 

nodes, elements, and groups of each. Input files list the parameters for the analysis such 

as element types, material properties, boundary conditions, and solver controls.  

 Since Tahoe is a complex analysis package with a wide variety of options, it 

becomes impractical to control all of these options from within the virtual environment, 

where interaction is limited to a multi-buttoned wand for simplicity and a menu system. 

However, it is also desirable to avoid forcing the user to create or edit this input file any 

time they wish to perform an analysis.  As a compromise, the interactive design 

application builds a skeleton Tahoe input file for a mesh-free analysis from the limited 

options available to the user in the virtual environment. This skeleton file may be used as 

is by the tahoe solver, or edited by hand or with a graphical XML editor to further tune 

the analysis.  

 The Tahoe geometry file is created from the initial ABAQUS input file by the 

Data IO module. Tahoe provides some support for the loading of ABAQUS input files, 

but it is apparently only usable for those generated with ABAQUS 5.x; not the 6.5 

version used here. This geometry file is only used for the full analysis at the start of the 

interactive design program. For subsequent reanalyses the Tahoe Manager fills in the 

deformed model geometry and properties directly. 

 



www.manaraa.com

33

3.3 Virtual Environment Issues 

 As mentioned, controlling a sophisticated analysis package like Tahoe from 

within a virtual environment presents some challenges. There are a wide number of input 

file options to control. To make this easier, the application makes it easy to specify which 

particular parameters should be changeable from within the virtual environment, and how 

those parameters affect filling in the skeleton input file. A special menu is used where the 

user may toggle on/off different options, or alter numeric values with a slider bar that lets 

the user move within a range.  

 This method of interaction is a good compromise between forcing the user to 

accept default solver values, changing them only when outside the virtual environment, 

and having the user modify the entire input file while in VR. That would be a time 

consuming task even with a hand-held tablet PC, and would force the user to carry 

another piece of equipment into the environment. By choosing parameters to be modified 

interactively, the user may be presented with only the most relevant options for the 

design they are modifying. 

 Once Tahoe was implemented as an optional solver in the interactive design 

application it becomes desirable to compare its analysis results to the homegrown mesh-

free code originally used. While it is a given that Tahoe supports far more material 

models and analysis options, the authors wanted to see if it presented any advantages in 

speed and/or accuracy in the linear elastic case. The following section details this 

comparison. 

 

4. Testing Tahoe  

 There are two goals in testing Tahoe's mesh-free methods with the current 

interactive design application's mesh-free implementation, referred to here as the “M3d” 

solver. The first is to compare the accuracy of the two packages with each other against a 

problem with a solution provided by commercial software using standard finite elements, 

in this case ABAQUS. The second is to compare the speed of analysis and reanalysis for 

each. For the full analysis this speed is less critical, since it is not something the user will 

do often in the virtual environment. The speed of reanalysis is much more critical, since 
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experience indicates a designer in VR only waits about 30 seconds for a reanalysis to 

complete before becoming distracted from the task at hand.  

 Though the PCG reanalyses is used in both cases, its solution is only part of the 

reanalysis process. The PCG method uses the deformed model stiffness matrix in its 

calculation. That means the time to compute this new stiffness matrix is quite important, 

even more so when one considers that mesh-free methods take longer to assemble this 

matrix than standard finite elements [17]. For smaller problems, the matrix assembly 

process often takes longer than the PCG solution step. 

 

4.1 Example Problems 

 Three example problems were used in these tests. The first two consist of a beam 

with a uniform displacement on one end. The third is a brick with a circular hole under 

tension.  Even though they may be solved with 2D assumptions, these problems were all 

done with a full 3D analysis. The limitations of the M3d mesh-free implementation limit 

the selection of example problems, since they must be linear elastic. 

 

4.1.1 Example 1 

 The first example uses a 2cm x 2cm x 10cm beam with a uniform displacement of 

0.001cm in the vertical direction applied to one end. The other end is fixed. Material 

properties used are Young's modulus: 200 GPa and Poisson's ratio: 0.3. Figure 3.3 below 

diagrams this example case in two dimensions. The displacement here has been 

exaggerated for clarity. 

Figure 3.3. Beam with a uniform displacement 
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This example was modeled in ABAQUS with 625 elements and exported to an 

input file. The input file was first solved with ABAQUS, and then loaded by the 

interactive design application for use with the Tahoe and M3d analyses.  

 

4.1.2 Example 2 

 The second example problem is analytically identical to the first. The only 

difference was the beam model is now discretized into 1617 elements. This tests to see if 

both methods give reasonable answers as the number of elements grows, and to compare 

timing data.  

 

4.1.3 Example 3 

 The third example problem is a hole in a brick under tension due to displacement. 

Only a quarter model is used to take advantage of symmetry. This model is 10cm x 10cm 

and 5cm thick with a 2cm radius hole. Again material properties are Young's modulus: 

200 GPa and Poisson's ratio: 0.3. The quarter brick model uses symmetry on the bottom 

and left edges, while the top edge has been displaced by 0.001cm in the upward direction. 

Figure 3.4 shows the quarter model.  

 

Figure 3.4. Quarter brick with a hole 
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This model was created in ABAQUS with 2574 elements, exported to an input 

file, and solved by each of the three methods.  

 

4.2 Results 

 Each example problem was tested on a Red Hat Enterprise Linux workstation 

with dual 3.6Ghz processors and 3GB of RAM. To compare results Von-Mises stresses 

were obtained and plotted verses the analytical solution. To time each example problem, 

both the Tahoe and M3d analyses were run 10 times. The times for matrix assembly and 

system solution were recorded and averaged.  

 

4.2.1 Example 1 

 In this example the Von-Mises stresses were computed by the application and 

taken from the top center row of the beam for comparison with a graph. They were 

plotted along with the ABAQUS solution in Figure 3.5. Timing data appears in Table 3.1. 

 The results show that both of the solvers give very similar stresses, and agree well 

with ABAQUS.  Some unevenness does appear at the fixed edge of the beam, but this is 

not surprising given the coarseness of the mesh. The timings are also similar, though 

Tahoe does perform a faster assembly of the stiffness matrix.  
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Figure 3.5. Von-Mises stresses along top center of beam 

 

Tahoe M3d 

Run Assembly Solution Assembly Solution 

1 0.18 2.8 0.85 2.97 

2 0.18 2.82 0.85 2.9 

3 0.18 2.81 0.86 2.91 

4 0.18 2.81 0.86 2.91 

5 0.18 2.8 0.85 2.77 

6 0.18 2.81 0.85 2.91 

Average 0.18 2.81 0.85 2.9 

Table 3.1. Matrix assembly and solution times in seconds 
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4.2.2 Example 2 

 Similar to example 1, here the number of elements in the beam was increased. 

Results again show both solver stress plots and solution times largely in agreement; see 

figure 3.6. The timings, however, demonstrate Tahoe's clear advantage in the matrix 

assembly step. It was on average almost six times faster as shown in Table 3.2. 
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Figure 3.6. Von-Mises stresses along top center of beam 
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Tahoe M3d 

Run Assembly Solution Assembly Solution 

1 0.55 13.54 2.89 14.94 

2 0.55 13.48 3.05 15.39 

3 0.55 13.51 2.51 11.83 

4 0.55 10.9 3.1 15.39 

5 0.57 11.69 3 14.84 

6 0.53 13.56 3.03 15.3 

Average 0.55 12.78 2.93 14.61 

Table 3.2. Matrix assembly and solution times in seconds 

 

4.2.3 Example 3 

 The last example uses Von-Mises stresses along the bottom center of the brick, 

starting at the edge of the hole and moving away. As with the first two examples, the 

stresses between Tahoe, M3d, and ABAQUS are almost indistinguishable. This example 

also lacks the fixed end unevenness present in the beams. The timings for this case are 

not presented, since they simply continue the trend of the M3d matrix assembly being 

more costly Tahoe. The Von-Mises stresses are plotted vs. position in figure 3.7. 
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Figure 3.7. Von-Mises stresses on bottom edge of quarter brick model 

 

4.3. Results 

 From the preceding examples, Tahoe appears a good replacement for the M3d 

solver in the program. It provides faster analyses with similar accuracy, and is capable of 

dealing with more complex material models and non-linear problems. The Tahoe solver 

module works well from within the interactive design application; the user does not 

realize anything has been changed, other than the results compute more quickly. 

 

5. Conclusions 

 The interactive design application has been presented in its current state. The 

program combines computer aided design (CAD) geometry, engineering analysis results 

with mesh-free methods, real-time shape manipulation with fast analysis approximations, 

and haptic force feedback in a virtual environment for engineering design. These key 

potions were explained in detail.  

 To apply these methods to a wider variety of engineering problems and analysis 

types that could be encountered by a designer, the Tahoe analysis package was selected 

from a search of existing software options and integrated with the application. Tests were 

performed to compare Tahoe’s mesh-free methods with those originally implemented in 
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the application. The results show Tahoe’s speed, accuracy, and flexibility to be a 

favorable addition to the interactive design process.  
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CHAPTER 4.  STRESS SENSITIVITY CALCULATION METHODS FOR 

INTERACTIVE MESH-FREE REANALYSIS 

 
To be submitted to: Computer Modeling and Simulation Engineering 

Andrew Fischer, Judy M. Vance 

 

1. Introduction 

 The evolutionary path of improving and optimizing designs is a frequent 

engineering task. Computational techniques such as the Finite Element Method (FEM) 

are common in these later stages of the design process, when the allowable changes to a 

product are relatively small. There is a correspondingly large body of research devoted to 

refining this improvement process with various optimization methods. In contrast to this, 

the initial creative design stage, where crucial product geometry is determined, has seen 

far fewer attempts at providing formal computational aid [1].  

 The goal of this work is to develop a methodology that aids the initial design 

process before a working solution exists. This is accomplished by coupling computer 

models with analysis models; allowing shape and design changes to be performed in real-

time with fast stress analyses and re-analyses, all within a three-dimensional virtual 

environment [2]. A combined design and analysis environment with a minimum of 

restrictions on the freedom of the designer should encourage the quick investigation of 

many possible shape and design changes and how they affect the final product 

performance and operation. Obtaining a better initial design aids the evolutionary product 

improvement process. 

 Working within a virtual environment provides truly interactive design, where 

groups of designers and analysts work together to investigate geometry and analysis 

results. Mesh-free analysis methods are used in place of traditional finite elements to 

avoid the computationally costly re-meshing process as designers perform large shape 

changes. For additional information, haptic or force feedback provides another method to 
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aid users in determining the suitability of a design. These components work together to 

provide maximum freedom for the designer.  

 Making these interactive design methods truly practical requires that they be fast, 

reasonably accurate, and permit maximum freedom to explore design possibilities. These 

requirements are difficult to balance, as the most accurate methods are naturally the most 

specialized and time consuming, while the fastest approximations are often the least 

accurate. Working within the virtual environment becomes a dominant factor since the 

effectiveness of an application is shown to depend on real-time interaction [3l]. Since 

interactive design is the principal goal of this work, the greatest limitations are those that 

make these methods less interactive.  

 This research presents the Interactive Virtual Design Application (IVDA), a 

program created to implement and test these methods. The IVDA permits users to load 

CAD model and boundary conditions into the virtual environment, run a mesh-free 

analysis, and view the results. By defining a bounding volume around portions of the 

model, a designer may interactively change the shape and see the stress pattern update in 

real time using a linear Taylor series stress approximation. This approximation uses stress 

sensitivities computed with a finite difference technique. At any time, the model may be 

reanalyzed with a Preconditioned Conjugate Gradient method to update the stress pattern 

and sensitivities. 

 The time required when calculating the stress sensitivities during the reanalysis 

phase is one limitation to an interactive design experience. Since the stress sensitivities 

are currently computed via a global finite differences technique, the model must be 

perturbed once in each coordinate design direction and a full equilibrium analysis 

performed for each perturbation. This means reassembling the stiffness matrix a total of 

four times for each reanalysis step, once for the new stress levels and once more for each 

perturbation in a sensitivity direction. The finite difference technique is also very 

sensitive to the interval chosen for perturbation, which is currently input as a best guess 

by the designer. This can greatly decrease the accuracy of the calculated sensitivities. 

Since computing the stiffness matrix is generally very time consuming for mesh-free 

methods, and it must be done four times for each reanalysis, this matrix calculation is the 
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slowest portion of the reanalysis step, further hindering the interactive feel of these 

methods while in Virtual Reality (VR).  

 Given these limitations of the finite difference sensitivity calculation, it makes 

sense to pursue better methods. This work presents the results of comparing additional 

sensitivity calculation methods and selecting one for implementation and testing. 

Methods were chosen based on their applicability to the deformation techniques used in 

this application. The implemented method was tested based on the speed, accuracy, and 

robustness of the reanalysis.  

 The remainder of the paper is as follows: Section 2 provides an overview and 

sample use of the interactive design application as well as an explanation of the current 

sensitivity calculations. Section 3 presents the results of a literature search for sensitivity 

replacement methods and the selection of a method to implement. Section 4 details the 

implementation of the selected discreet derivatives method. And section 5 explains the 

tests and sample problems used to compare sensitivity calculations. 

 

2. The Interactive Design Application 

 The existing application is written in C++ using the VR Juggler software library 

developed at the Virtual Reality Applications Center at Iowa State University. VR 

Juggler provides a framework for programs to run on a wide variety of virtual reality 

devices [4]. Currently a cluster of Linux workstations is used to run the application and 

drive the virtual environment. This cluster also performs the mesh-free analysis and 

sensitivity calculations. The application is typically used in the C6 virtual reality 

environment, a cubic room with six projection screens forming the six walls of the room. 

[5]. The user interacts with the application through a series of menus within the virtual 

environment, as seen in Figure 4.1. 

 



www.manaraa.com

46

Figure 4.1. The virtual design environment. 

 

Haptic or force feedback may also be provided to the user in the virtual 

environment through a SensAble Technology's PHANToM [6]. This optionally allows 

the user to experience forces related to the stress levels in a model while changing its 

shape, providing an additional channel of information about the stress state. A separate 

computer drives the PHANToM and networks with the cluster driving the application [7]. 

 

2.1 Using the application 

The user begins by loading an existing FEA model and it's boundary conditions 

into the virtual environment. Models may be exported from an existing finite element 

package such as ABAQUS or created by hand, since a simple XML model format is 

used. Once loaded the model and applied boundary conditions appear in the virtual 

environment next to the user.  

 Typically a Reproducing Kernel Particle Method (RKPM)  mesh-free analysis is 

then performed on the model to compute the displacements, stains, and stresses. In mesh-

free methods the displacement approximations are given entirely in terms of the meshless 

nodes, so no element meshes are needed [8]. This avoids mesh distortion issues, making 

mesh-free particularly well suited to this application. The reproducing kernel is used to 

approximate unknown displacements in terms of the displacement coefficients at the 

mesh-free nodes.  This relationship is shown in equation 1, where uh(x) is the 

displacement, ΨI(x) is the reproducing kernel shape function evaluated at the point x,

with respect to the I th node, and dI are the displacement coefficients. 
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These kernel functions are not interpolating, so the displacement at a nodal point 

is not equal to the value of the displacement coefficient at that node. This does make 

displacement boundary conditions more difficult to apply in mesh-free methods. 

 Two analysis options are available: 1. A custom RKPM implementation that uses 

Stabilized Conforming Noda Integration (SCNI) developed by Chen, et. al. and 

implemented at ISU [9]; 2. A mesh-free analysis using the open-source Tahoe software 

[10]. The use of Tahoe provides for a greater range of analysis types and options, both 

mesh-free and traditional FEA, and is the default analysis. The resulting stress pattern 

appears on the model in virtual reality along with a color bar showing the range of stress 

values. A variety of stress patterns may be viewed including Von Mises, maximum shear, 

etc. An analyzed model appears in Figure 4.2 below. 

Figure 4.2. Analyzed model with boundary conditions visible 

 

Once the stress pattern has been observed a designer will decide what portions of 

the model to shape change. In VR the user simply uses the hand-held wand to define one 

or several bounding boxes around the areas of interest. These boxes may be in turn 
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subdivided into smaller volumes for additional shape control. The bounding boxes are 

used to produce Catmull-Clark subdivision volumes, an extension of free-form 

deformation techniques. The model is numerically embedded in the resulting volumes 

which permits the user to change the model's shape by manipulating the controls points 

of the bounding volumes [11]. Such a bounding volume is visible around the model in the 

lower right portion of figure 1 above. 

 At this point the designer must decide what portions of the bounding volumes 

should be moved to change the underlying model shape. The wand is used to choose the 

corresponding bounding volume control points in 3D space, and the stress sensitivities 

are then computed based on the control points selected. This is currently performed using 

a finite differences technique. The control points (and therefore the model) are all 

deformed in the x, y, and z directions, and for each deformation, the system of equations 

is resolved using a PCG reanalysis method. 

 With the stress sensitivities computed, a linear Taylor series approximation is 

used to calculate the changes in stress as the model is deformed. The Taylor series 

approximation requires the stress (σ), a design variable (h), and the derivative of the 

stress with respect to that design variable, known as the stress sensitivity [12]. Using this 

information the new stress values (σ’) may be computed as shown in equation 2 

 

h
h
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∂
∂

+=
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While this stress approximation is poor for large design changes, the simplicity of 

calculation makes it fast enough for interactive stress updates while the designer changes 

the shape. This real time update is crucial to give the designer an intuitive feel for how 

shape changes affect the stress contours. At any time, the user may pause moving the 

control points and resolve the system of equations for the deformed model. The PGC 

reanalysis is again used for this approximation. Stress sensitivities are again calculated 

using the finite differences technique, providing a new base for the Taylor series 
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approximation. The designer may also select different control points to change different 

parts of the model.  

 The PCG reanalysis used to resolve the system of equations is presented in detail 

by Chipperfield et al. [13].  In summary the method uses the solution to the initial full 

analysis of the mesh-free equations, which involve a linear system: 

 

Kd = f eq. 3 

In equation 3 above, K is the sparse stiffness matrix, d is the vector of 

displacement coefficients, and f is the right hand side force vector. The inverse of K, (K-

1), is computed for the full analysis and stored. When the designer wishes to re-analyze a 

deformed model, a new system is formed:  

 

K* d* = f* eq. 4 

Assuming the new K* matrix for the modified design is similar to the initial K

matrix, the stored K-1 matrix makes an excellent pre-conditioner to solve equation 4 with 

the PCG method.  This technique was shown to converge quickly even for large shape 

changes. The PCG reanalysis is implemented with either the Tahoe software or the 

custom RKPM solver.  

 The designer is free to continue changing the part shape by moving the control 

points, selecting different controls points, or building new bounding volumes. Once 

satisfied with the resulting shape, the part may be exported back to a file for full analysis 

in an external finite element package. Figure 4.3 provides a sample flowchart of the 

program's operation.  
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Figure 4.3: Flowchart for the interactive design application. 

 

2.2 Calculating stress sensitivities 

 Stress sensitivities are a key part of the linear Taylor series approximation used to 

compute the stress pattern changes while the designer modifies a model in VR (see 

equation 2.) To maximize the effectiveness of the Taylor series approximation, the 

sensitivities need to be as accurate as possible. And to minimize the amount of time a 

designer has to wait in the virtual environment, calculation of these sensitivities should be 

as fast as possible.  

 The global finite differences technique is currently used to compute stress 

sensitivities every time a designer re-analyzes the model and/or chooses new control 

points to move. Since the designer may translate controls points anywhere in 3D space, 

the sensitivity values need to be computed once for each of the 3 coordinate directions 

(x,y,z). This requires reassembling and reanalyzing the entire system 3 times with a small 

perturbation in a single coordinate direction each time.  If the designer has just finished 

moving control points to a new location, a fourth assembly and reanalysis is required to 

get the updated stress for the new model shape before sensitivity calculation begins. This 

is undesirable for two reasons:  
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1. It is slow. Resolving the system 4 times requires 4 different matrix assembly steps 

and 4 different solutions. The PGC reanalysis makes the solutions much faster, 

but the matrix assembly still can take quite a bit of time.  

2. Accuracy is poor. The finite difference method’s accuracy is highly dependent on 

the control point perturbation interval, and choosing the proper perturbation 

interval is dependent on the model being analyzed. 

 

To overcome these limitations and determine a suitable replacement to the finite 

differences method, a review of other sensitivity calculation techniques was performed. 

The methods were then compared based on several factors, and the most promising was 

implemented for testing. The results of this review and the selection process for a method 

to implement are presented below.  

 

3. Literature review 

 Kim defines design sensitivity analysis as computing "the sensitivity of 

performance measures with respect to design variables" [1]. In the context of the 

interactive design application, the performance measure relates to the stress levels in the 

part while the design variables relate to the changes in part shape due to free form 

deformation techniques used by the designer in VR.  

 Using the stress levels as a performance measure means we have no explicit 

relationship between it and the shape design variables, since in both mesh-free and FEA 

analyses the stress is determined from the displacement. Thus the derivative of stress with 

respect to the shape design variables in equation 2 is written as: 
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Where d is the model displacement. Since stress (σ) and displacement (d) are directly 

related in linear elastic analysis, it is easy to calculate the ∂σ/∂d term. The difficulty lies 

in obtaining ∂d/∂h.

Following Kim's analysis, we assume our model obeys the linear equation: 

 

K(h)d = f(h) eq. 6 

Where K is the stiffness matrix and f the load vector. Both are functions of and are 

differentiable with respect to our design parameter h, so the solution d also depends on h.

By differentiating equation 6 with respect to h, we obtain: 
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Since we know K(h) and f(h) we can obtain ∂K/∂h and ∂f/∂h, and solving equation 6 

gives us d. This lets us solve for ∂d/∂h in equation 7, which may be used in equation 5 to 

obtain ∂σ/∂h, the design sensitivity.  

 In researching design sensitivity analysis literature, it is important to note the type 

of design variable(s) and analysis methods being used. The interactive design 

application's primary purpose is to let the designer alter the shape of a model, so 

sensitivity analysis techniques focusing on shape design parameters is of particular 

interest. A mesh-free analysis is typically used to avoid mesh distortion issues when the 

model geometry is deformed, so literature involving other analysis types, such as the 

Boundary Element Method, though extensive and useful, isn't always applicable [14].  

 An excellent overview and comparison of the methods available for design 

sensitivity analysis calculation is presented by van Keulen et al [15]. There are 4 basic 

types of sensitivity calculation techniques available: (1) global finite differences, (2) 

discrete derivatives, (3) continuum derivatives, and (4) automatic differentiation. Some 

techniques may be further subdivided depending on whether or not analytical techniques 

are used when calculating various derivatives. Each technique and its applicability to 



www.manaraa.com

53

interactive design is explored below, following a brief history of the sensitivity 

techniques used by this application. 

 The earliest incarnation of the interactive design application worked on the 

approximation of eigenvalues and eigenvectors for large design changes. Pade 

approximants and curve fitting were used to achieve fast, reasonably accurate 

approximations, and the possibility for interactive shape changing was explored [16].  

 Later, sensitivity information from a pre-computed FEA analysis was taken from 

a commercial finite element package (MSC/NASTAN) and used to let a designer 

interactively alter a part shape in virtual reality [12]. When the shift was made to using 

mesh-free methods to avoid the element distortion errors inherent in deformed FEA 

models, a global finite differences approach was used due to its relatively straightforward 

implementation [17]. 

 

3.1 The global finite differences method 

 The finite differences approach is the easiest way to compute the stress sensitivity 

information required for interactive design. If you wish to approximate the change in 

some performance measure P(u) (the stress pattern in this application), and you know the 

current value of the measure at some design parameter u, you simply perturb the model 

shape by some small amount (∆u) and resolve the system to get P(u+∆u). The derivative 

may be approximated with either a simple forward or backward difference method: 
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Alternately, one could use perturbations in both directions resulting in a central 

difference technique: 

 

( )
u

uuPuuP
u
uP

∆
∆−−∆+

≅
∂

∂
2

)()()( eq. 9 



www.manaraa.com

54

In theory higher order approximations are possible as well, though in practice they are 

rare for sensitivity calculation.  

 Advantages of the finite differences method include the ease implementation and 

its wide applicability. Virtually any problem that can be solved and some performance P

calculated can be analyzed with a finite differences method. Disadvantages include the 

computational cost and the accuracy of the results. For each additional design variable, 

another solution of the equation system is required. For the interactive design application 

this means 3 solutions are required for every new sensitivity calculation step.  

 There are also two main sources of error inherent in finite differences. Both are 

related to the perturbation size (∆u). First is the truncation error, a result of ignoring the 

higher order terms in the approximation of the sensitivity (∂P/∂u). The second is known 

as the condition error, which includes numerical and round-off errors. These sources of 

error tend to compete with one another, as larger step sizes increase truncation error 

while decreasing condition error and vice-versa. For further details see Kirsch and 

Bogomolni's in-depth analysis of the finite differences method and it's suitability for 

design sensitivity analysis [18].  

 

3.2 Discrete derivatives 

 The discrete derivatives approach involves calculating portions of the 

differentiated discretized form of the system of equations, shown in equation 6 above. 

The terms that need to be found are ∂K/∂h and ∂f/∂h. Typically ∂f/∂h is not difficult to 

compute, since externally applied forces are usually either constant or not coupled to the 

model geometry. Calculating ∂K/∂h, however, depends on the type of problem being 

solved and how the stiffness matrix K was computed.  

 If both K and f may be differentiated analytically, then this is referred to as the 

analytical-discrete method. Such analytical differentiation, however, may be tedious to 

implement, especially if shape design sensitivity analysis is desired [15]. Difficulties in 

purely analytical differentiation are also encountered if the K matrix was constructed 

using numerical integration techniques, a common practice. To overcome these 

limitations, the semi analytical method may be used, which involves numerically 
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approximating the derivatives of K. A finite difference technique is typically used for 

such differentiation as in equation 10. 
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This is referred to as the discrete-discrete method.  

 Discrete discrete derivatives have the advantage of being fairly easy to implement 

and rather computationally inexpensive if finite differences are used to compute the 

derivatives of K. It is also a popular technique in commercial finite element software 

[19].  

 Despite it's wide use, there are disadvantages to the discrete derivatives approach. 

The analytical version is simply not practical to implement for shape design sensitivity 

analysis of a wide range of models. The discrete method, though popular, has been shown 

to exhibit accuracy problems in shape design analysis for a variety of structures [20].  

 To remedy this problem, Lund et al proposed a method for the exact numerical 

differentiation of the element matrices. By improving the approximate numerical 

derivatives of the matrices may be upgraded to exact differentiation by the application of 

correction factors. The results are supposed to eliminate the accuracy issues associated 

with the semi-analytical method [21]. Their work also contains a detailed implementation 

of the method with 3D solid elements. 

 

3.3 Continuum derivatives 

 The continuum method takes a different approach at a higher mathematical level 

than the other techniques listed here. The differentiation is applied to the variational 

equations, before the discretization of the model into a system of equations.  For a 3D 

elastic solid, as is commonly used in the interactive design application, the variational 

equation may be expressed as: 

 

Γ+Ω=Ω ∫∫∫∫∫∫∫∫
ΓΩΩ

ndzzfdzdzz
TT

)()(:)( σεσ eq. 11 
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By defining bilinear and load linear forms for the left and right hand sides of equation 11 

respectively, it may be simplified to: 

 

)(),( zlzza = eq. 12 

 

The terms in equation 12 are then differentiated with respect to the design 

parameters of interest, and the resulting equations are solved to obtain the structural 

sensitivity. This process is mathematically quite involved, and is well presented by Choi 

and Kim in their comprehensive book on structural design sensitivity analysis [22]. Their 

work is used as the main reference for continuum derivative design sensitivity analysis in 

the remainder of this paper. 

 The continuum method may be further subdivided into two types, depending on 

whether exact solutions to the continuum equations exist or not. If they do exist and are 

used the calculation is a continuum-continuum method, and it provides an exact 

analytical expression for the design sensitivity analysis. However, such exact solutions 

exist for a very small subset of problems. Far more useful for practical engineering 

problems is the continuum-discrete method, where FEA methods are used to compute the 

design sensitivity via the differentiated continuum equations.  

 Advantages of the continuum methods are the evaluation of accurate design 

sensitivity information without recourse to any sort of finite difference technique and it's 

associated uncertainties. Continuum methods are also developed independent of any 

particular analysis method, so they apply equally well to standard FEA and mesh-free 

techniques.  

 One potential drawback to the continuum methods as used in this paper is the 

need to calculate the design velocity field associated with the shape changes in a model 

due to the designer's actions. The accuracy of the sensitivity results depends on the 

accuracy of the design velocity field calculation, and the design velocity field must meet 

certain requirements. Choi and Kim present several alternatives to compute the design 

velocity field, including a finite difference method, an isoparametric mapping technique, 
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a boundary displacement method, and a hybrid method. To use continuum sensitivity 

methods with the interactive design application one would have to ensure the 

implemented design velocity field calculation method works with the free-form 

deformation techniques used. 

 

3.4 Automatic differentiation 

 Automatic or algorithmic differentiation refers to computing the derivatives of 

functions in the computer analysis code itself. Since computer analysis codes are really 

just a collection of elementary functions, it is possible to define partial derivatives of 

these elementary functions and related subroutines using the chain rule of differentiation. 

Software packages exist to perform this automatic differentiation, such as ADOL-C [23], 

ADIC [24] and the open source CppAD [25] for C++ computer code. 

 Given a computer function F:Rn->Rm, the automatic differentiation software 

would produce a fuction F' that not only evaluates F for any input x∈Rn, but also it's 

Jacobian J∈Rmxn at the same value of x. The software continually applies the chain rule 

of differential calculus to the simplest mathematical operators in the computer code, eg 

addition, multiplication, trig functions, etc., that have known derivatives. These 

individual derivatives are combined to yield the derivative of the entire function.  

 Automatic differentiation also may be applied via two distinct approaches. The 

forward mode works with the function output variables where derivatives are to be 

computed, called dependent variables. Input variables to the function being differentiated 

are independent variables. Derivatives are propagated along with the control flow of the 

function F. The reverse mode produces derivatives by running the function and it's 

subroutines in reverse [26]. In general, the forward mode requires more CPU time but 

lower memory storage, while the reverse mode is favorable from a computational 

standpoint but can require significantly more computer memory since it actually runs two 

sweeps through the function [27]. 

 Despite its name, automatic differentiation is not always purely automatic. It is 

sometimes necessary to tweak the results of applying automatic differentiation software 

to an analysis code to increase efficiency. Still, automatic differentiation is finding 
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increased use in optimization related fields. To date, applications consisting of around 

400,000 lines of code have been differentiated [28]. A collaborative effort between 

Argonne National Laboratory and RWTH Aachen University has created 

www.autodiff.org, a comprehensive web site with information about the process of auto-

differentiation. 

 

3.5 Considerations for implementation 

 Selecting the sensitivity calculation method to implement and compare was done 

by choosing 5 criterion and evaluating each method's performance based on that criterion. 

These criterion are somewhat different for the interactive design application than a more 

traditional analysis program due to the focus here on early stage design, speed of 

calculation, and more use of qualitative results to aid designers who have been given 

great freedom to interactively change geometry. The criterion selected were: 

 

1. Expected speed improvements. The primary reason for seeking alternative 

sensitivity methods to global finite differences is the long time required for 

calculations; three full matrix assemble and solve steps. An alternative method 

should be faster by avoiding additional assemble-solve steps.  

2. Perturbation interval dependence. The finite difference method's strong 

dependence on perturbation interval size reduces the sensitivity accuracy. A 

replacement method should reduce or eliminate this dependency.  

3. Ability to use the selected method with shape design sensitivity analysis through 

subdivision surface free-form deformation. The interactive virtual design 

application's use of free-form deformation for shape design is an important tool, 

since it provides designers nearly unlimited freedom to change shape and size in 

virtual reality. It has to be applicable to the selected sensitivity method, as when 

computing the design velocity field.   

4. Applicability of the selected method to mesh-free analysis methods. Mesh-free 

methods offer improved solution accuracy over traditional finite element methods 

when large shape changes are taking place. Though the shape design sensitivity 
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technique chosen should be general enough to apply to both analysis methods, a 

method with examples of a mesh-free implementation would be very helpful. 

5. Ease of implementation within the framework of the existing application. The 

selected method should be easy to plug into the existing application structure 

without substantial rewriting. It should also have the potential to be easily 

removed or exchanged for another method. 

 

Each of the sensitivity analysis methods listed in sections 3.1-3.4 were compared 

based on the above criterion. A summary of the results appears below on a per method 

basis. 

 

Global Finite Differences 

 The current finite difference technique has several strong advantages, which is 

why it was implemented in the first place. It is equally easy to apply to shape design 

sensitivity analysis as to any of the other design parameters, it applies equally well to 

mesh-free and standard finite element methods, and it functions nearly independently of 

the method used to deform the model, since you only need nodal locations before and 

after deformation without regard to how they were moved. As mentioned, however, for 

speed and accuracy considerations the finite differences technique is considered 

unacceptable in the context of the interactive design application. 

 

Discrete derivatives - semi analytical method 

 Since the full analytical method for discrete derivatives requires analytical 

differentiation of K and f, it is considered impractical to implement in light of the 

requirements for shape design sensitivity analysis and the numerical methods used to 

assemble the element matrices. 

 The semi analytical method has the advantage of being widely used so reference 

implementations are easy to locate. It's more efficient than finite differences so it is 

expected to be faster. It requires design velocity field information to be computed with 
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the subdivision surface techniques, which is similar to the methods used in the semi 

analytical method literature. The theory is general enough to apply to mesh-free methods. 

 The accuracy errors exhibited in shape design analysis are troubling, but the exact 

numerical differentiation method proposed by Lund et al is very promising. It removes 

the perturbation size dependence and claims excellent accuracy. Implementation should 

be straightforward in light of the presented examples with 3D solid elements.  

 

Continuum derivatives 

 The continuum derivative method presented by Choi and Kim is a good candidate 

for several reasons. Since differentiation takes place before discretization, there is no 

need to compute stiffness matrix derivatives, so the results are expected to be quite 

accurate. The method also applies well to all analysis techniques, since it is developed 

independently of the analysis method. 

 Mathematically the continuum methods are more involved than the other 

techniques listed here. The speed of calculation may be slightly slower since some 

additional steps are required vs. the discrete method. There is also less literature available 

on their implementation, since they appear more recently developed and less widely 

understood. The continuum method also places strict requirements on the computation of 

the design velocity field, which may not be guaranteed by the subdivision volume 

deformation techniques used here.  

 

Automatic differentiation 

 The theoretical advantage of automatic differentiation is it's broad applicability to 

an existing analysis code and it's accuracy. It should also be unrelated to the analysis 

method and the geometry deformation technique used. Studies show automatic 

differentiation to be very computationally efficient, so it is expected to be very fast. 

 Practically, use of automatic differentiation may not always be automatic or easy, 

especially for large analysis codes. The methods also seem fairly experimental yet, with 

few details of large scale general implementations available. It would also require a 

substantial number of source code changes to the existing program and to Tahoe, instead 
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of making an additional code module to handle the sensitivity analysis. This would 

greatly increase the implementation difficulty. 

 

To help visualize the differences between methods for shape design sensitivity 

analysis, a simple decision matrix was created. The matrix appears in table 1 below. The 

different criterion appear across the top while the choice of analysis technique appears 

down the left column. Each technique was rated on a scale from 1-3 for each criterion 

with 4.1 being the worst and 3 the best. The finite difference technique is included here 

for reference. 

 

Speed Accuracy Shape 

Design  

Subd. 

Volume 

Meshfree 

Applicability 

Ease of 

Implementation 
Total 

Finite  

Differences 

1 1 3 3 3 11 

Discrete 

Derivatives 

2 3 3 3 3 14 

Continuum 

Derivatives 

2 3 2 3 2 12 

Automatic 

Differentiation

3 3 3 3 1 13 

Table 4.1. Decision matrix for selecting a sensitivity calculation method. 

 

From the decision matrix, it appears that the discrete derivatives come out ahead, 

with the automatic differentiation method just behind. In light of this, and the excellent 

documentation presented by Lund et al, the discrete derivatives method with exact 

numeric differentiation was selected for implementation and testing vs. the existing finite 

differences sensitivity calculation method. Section 4 details this implementation. 
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4. Implementation  

 The interactive design application itself is a collection of C++ modules that are 

linked together to form the overall program. The modules communicate with each other 

via set methods, which makes it easy to add/remove/change modules without affecting 

the rest of the application. The main module uses VR Juggler to drive the virtual 

environment and receive user input. Models are loaded from disk via the I/O manager 

and controlled by the model manager. Either the Tahoe analysis software or a custom 

mesh-free solver (M3D) may be used to perform the actual analysis, while a separate 

module handles the PCG reanalysis. The Taylor Series approximation for stresses 

computes the updated stress contours based on stress sensitivity information as a model is 

altered via free form deformation.  

 A diagram of the program layout appears in figure 4. Solid ovals denote modules 

written specifically for the interactive design application while dotted denotes 3rd party 

software used by the application.  

Figure 4.4. Diagram of the Interactive Design Application 

 

In this design, the stress sensitivity calculations are performed by the main 

module since the actual finite difference calculation is quite simple. Information on stress 

states from the solver is used with nodal position data from the model to generate the 

sensitivity data for the Taylor Series.  
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To work with more advanced stress sensitivity calculation methods, a separate 

shape design sensitivity analysis (SDSA) module was created and abstracted out of the 

main module. It is general enough to work with data from either the custom M3D solver 

or the more powerful Tahoe analysis software. Since implementing the discrete 

derivatives with exact numeric differentiation required more information from the 

analysis software, the SDSA module was made a sub module of the solver, with access to 

special information from either M3D or Tahoe.  

 

4.1 Discrete derivatives with exact numeric differentiation 

 The basic tenet of discrete derivatives is the implicit differentiation of the overall 

equilibrium equation, resulting in equation 7 above. It is repeated here as equation 13 for 

convenience. 

 

d
h
K

h
f

h
dhK

∂
∂

−
∂
∂

=
∂
∂)( eq. 13 

 

As mentioned, the calculation of ∂K/∂h is the difficult part in this process. ∂f/∂h is 

simple, and vanishes for design independent loads. ∂K/∂h is typically calculated and 

assembled on an element-by-element stiffness matrix (k) basis, as in equation 14, in 

much the same way as the global stiffness matrix (K). 

 

∑ ∂
∂

=
∂
∂

i

i

h
k

h
K eq. 14 

Only the elements perturbed by the model deformation will contribute to the overall 

calculation of ∂K/∂h. So while equation 14 sums over all elements, those elements that 

remain un-deformed may be skipped. 

 Calculating the derivatives of each element stiffness matrix (k) requires working 

with the deformed coordinates of the element. The deformed element coordinates may be 

obtained using the shape design change and the chain rule in equation 15. 
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The ∂n/∂h term is the design velocity field, representing the change in element 

coordinates with respect to the change in subdivision volume control point positions. This 

is obtained via finite differences since there is no explicit relationship between the two 

for the subdivision volume deformation methods used in the interactive design 

application. 

 To obtain the ∂k/∂nj term in equation 15, the exact numeric differentiation 

technique of Lund et al is applied, starting with the expression for the element stiffness 

matrix k.

( )∫
Ω

Ω= dJEBBk T eq. 16 

Here B is the strain displacement matrix, E the element material matrix, and J the 

Jacobian. Differentiating k with respect to the element coordinates (n) gives the 

following: 
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Two derivatives are now needed, ∂B/∂n and ∂|J|/∂n. Since the coordinates x,y and 

z only appear linearly in the determinant of the Jacobian, |J|, the derivative of |J| will be 

independent or at most linear with respect to nodal coordinates n. Hence ∂|J|/∂n may be 

computed exactly via a forward finite difference scheme. 
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The ∂B/∂n term is more complicated, since it requires the shape function 

derivatives ∂N/∂n. The strain displacement matrix B is calculated from each of the nodal 

coordinates as in equation 19. 
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Here j is the number of nodes. Each nodal ∂b/∂n term is a matrix of shape function 

derivatives: 
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Using the Jacobian matrix and finite differences, the shape function derivatives 

∂Ni,(x,y,z)/∂n may be found. 
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Now, all terms needed to form the exact derivative of the element stiffness matrix 

are computed. They can be used to form ∂K/∂h and solve for the ∂d/∂h term in equation 

13. Once ∂d/∂h is found, the stress sensitivities, ∂σ/∂n, may be calculated using equation 

22. 
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4.2 Design sensitivity analysis with Tahoe 

 The Tahoe software itself currently does not provide any support for doing design 

sensitivity analysis calculations. Since Tahoe was shown to be a faster, more accurate 

replacement for the original M3D solver in this application, performing Design 

Sensitivity Analysis (DSA) with Tahoe is an important goal. While applying the global 

finite differences technique is a trivial process, the discrete derivatives method with exact 

numeric differentiation was more challenging.  

 Tahoe is a large project with support for many different elements, material 

models, and analysis types. It supports mesh-free methods, crack analysis, cohesive 

models and a number of other more specialize features [29]. Fortunately Tahoe is well 

structured and makes generous use of the C++ language's advanced features, so the 

changes necessary to add a DSA module can be done cleanly and with a minimum 

amount of code.  

 To obtain the element information necessary to perform discrete derivative DSA, 

accessor methods were added to certain Tahoe classes. Code was added to base element 

types to return the Jacobian and strain displacement matrices, as well as compute their 

numeric derivatives with respect to coordinate changes. Any changes made to the Tahoe 

source code were stored as a series of patch files, so they may be easily applied to a new 

version of the software. 

 A custom version of the Tahoe FEManager, used to tie it the analysis in with the 

virtual design application, was given extra functionality as well. It was used to assemble 

the element stiffness matrix derivatives and solve for the displacement derivatives using 
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the already factored and stored K matrix.  The shape design sensitivity analysis program 

module uses this information to bring stress sensitivity information to the deforming 

model thereby generating improved Taylor series stress approximations. 

 

5. Example problem 

 To compare the speed of the discrete derivatives method with the global finite 

differences technique, an example problem is presented. A simple 3D beam, dimensions 

2cm x 2cm x 10cm, is fixed on one end and placed under a unit load at the other. Around 

the center, a 12 control point subdivision volume is positioned. The top two control 

points are selected and stress sensitivities are computed for the manipulation of those two 

control points in the x,y and z coordinate directions. Figure 4.5 details the example setup. 

This particular problem was small, only 625 elements.  

Figure 4.5. Beam example diagram 

 

Since the interactive design application allows the sensitivity calculation method 

to be selected on the fly, the model was loaded once and analyzed. This generates the 

factored stiffness (K) matrix, which is stored for repeated sensitivity calculations. The 

finite differences method was used first, followed by the discrete derivatives technique. 

Each method was run 5 times, and the timing results appear below in Table 4.2.  
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Run 
Finite 

Differences

Discrete 

Derivatives

1 2.43723 0.486943 

2 2.43421 0.447847 

3 2.4377 0.40741 

4 2.43462 0.405784 

5 2.42925 0.448757 

6 2.43647 0.447968 

7 2.44751 0.450565 

8 2.43513 0.490276 

9 2.42954 0.486614 

10 2.44616 0.40584 

Average 2.436782 0.4478 

Table 4.2. Comparison of times (in seconds) required to compute sensitivity values for a 

model with 625 elements 

 

As expected, the discrete derivatives method is noticeably faster than the finite 

differences technique for this problem. Due to the small number of elements, the repeated 

matrix assemble and solve steps used in the finite difference technique end up being quite 

a bit more costly than the discrete derivatives. 

To gauge the effect of larger problems on timings, the above sample problem was 

repeated for a model discretized with 1617 elements. All other conditions were the same. 

The times for this case appear in Table 4.3.  
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Run 
Finite 

Differences 

Discrete 

Derivatives 

1 8.80334 3.16602 

2 8.82466 3.20179 

3 8.79284 3.11785 

4 8.81535 3.07922 

5 8.80418 3.16653 

6 8.81807 3.13082 

7 8.80089 3.08936 

8 8.82984 3.04443 

9 8.79877 3.04512 

10 8.83926 3.04168 

Average 8.81272 3.108282 

Table 4.3. Comparison of times (in seconds) required to compute sensitivity values for a 

model with 1617 elements 

 

Lastly, a graph was made to illustrate the difference in stress sensitivity 

calculations. For the 1617 element beam, the Y-direction (upwards) stress sensitivity 

value was extracted for each element (or mesh-free node) in a strip along the top center of 

the beam. The plot appears in figure 4.6. 
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Y-direction stress sensitivity values across top of 
beam
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Figure 4.6. Plot of Y-direction stress sensitivity values across top center of beam 

 

The above plot shows some qualitative differences between the two methods. 

Both give the expected behavior, since stress is expected to decrease in the mid-section as 

you raise the height, thus thickening the beam through the cross section. The discrete 

derivative method, however, provides a smoother solution with less extreme values.  

 

6. Conclusion 

 To achieve faster, more accurate interactive design, the sensitivity calculations for 

Taylor Series stress approximations were improved. A review of the available shape 

design sensitivity methods was made, and a discrete derivatives technique with exact 

numeric differentiation was selected. This technique was implemented with the Open 

Source Tahoe analysis software and tested on a sample problem.  
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CHAPTER 5.  HAPTIC FEEDBACK TO GUIDE INTERACTIVE 

DESIGN 

For submission to: Presence: Teleoperators and Virtual Environments 

Andrew Fischer, Dao M. Vo, Judy M. Vance 

 

1. Introduction 

 Virtual Reality (VR) allows engineers to naturally interact with three-dimensional 

digital models in a three-dimensional space. This provides a unique interface between 

users and computer models not found in traditional desktop environments. Certain areas 

of engineering design use virtual reality in many ways, from prototype evaluation and 

virtual assembly to visualizing volumetric data sets [1] [2].  

 This work is based on a methodology for interactive design that uses virtual 

reality to aid the engineering design process. Computer analysis models with fast 

reanalysis approximations are coupled to geometric models in a virtual environment, 

permitting shape design changes and updated analysis results in real-time. This combined 

design and analysis environment places a minimum number of restrictions on the 

designer, encouraging the rapid investigation of many possible shape and design changes 

and how they affect the final product. The application developed to implement these 

ideas is referred to as the Immersive Virtual Design Application (IVDA).  

 To make working in such a virtual environment an effective experience, the user 

must feel immersed in the application. Immersion refers to a sense of "being there" that a 

user feels in the virtual world; the greater the level of immersion, the more real the virtual 

world appears and the more useful it becomes [3].  The level of immersion experienced in 

VR ranges from simple stereo vision on a desktop computer monitor to a multi-screen 

projection environment complete with active stereo vision, user position tracking and 

surround sound. The perceived level immersion in a VR environment is directly related to 

the number of senses stimulated, such as sight and hearing [4].  
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Unfortunately, many virtual reality systems and applications lack a key area of 

sensory stimulation: some form of physical force or haptic feedback. The word haptics 

refers to the feeling of force, weight, roughness or other physical resistance felt by a user 

in a virtual environment. Adding haptic feedback to a virtual environment is expected to 

improve the level of immersion and thus the effectiveness of the application. 

Investigation of task times for virtual assembly indicates that adding force feedback 

increases the efficiency of the application [5]. Similarly, virtual prototyping, where 

virtual reality is used to evaluate part designs for criteria such as ease of use by human 

operators, also indicates the addition of haptic feedback significantly decreases task 

completion times [6]. 

 The goal of this paper is to present the integration of haptic feedback to the 

existing interactive design application and to explore different ways to convey 

information about the analysis back to the designer. The remainder of this paper is a 

follows: Section 2 reviews literature about haptics and haptic devices, and outlines the 

immersive virtual design application. In section 3 the implementation of haptic feedback 

with the design application is detailed. Section 4 discusses different ways to present 

information to the user via haptic feedback. And section 5 covers the results of a pilot 

study run to gage the effectiveness of different types of haptic feedback for users of the 

immersive virtual design application. 

 

2. Background 

 The word "haptic" comes from the Greek haptesthai, meaning  to touch or grab. 

Research shows that the sense of touch actually has two components, tactile and 

kinesthetic. Tactile refers to the actual touching of a surface and the sensing of roughness, 

temperature, etc. Kinesthetic (dynamic) touch provides information about the physical 

properties of a whole object such as weight, size, and inertia. While the tactile sense 

depends on nerve endings in the body, the kinesthetic relies on the position of, and forces 

applied to, a user's hand and limbs [7].  

 

2.1 Haptic devices 
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Since a designer is expected to use whole arm motions and movement to work 

with the immersive design application, the decision was made early on to only explore 

kinesthetic haptic devices. Details on tactile devices are beyond the scope of this paper. A 

review of several kinesthetic haptic devices considered for use with the IVDA follows. 

 

2.1.1 The PHANTOM 

 Developed by SensAble Technologies, the PHANTOM family is a popular group 

of haptic devices for commercial and research applications. Originally, the PHANTOM 

was developed as a high fidelity, low inertia and relatively low-cost device to provide 

force interaction with virtual objects [8]. Today a number of different PHANTOM 

models are available, from the small desktop OMNI to the larger, more powerful 3.0 [9]. 

A picture of the PHANTOM 3.0 in use appears in figure 5.1 below. 

 

Figure 5.1. The PHANTOM 3.0 

Courtesy of SensAble Technologies 

 

To program for and control the PHANTOM two different software toolkits are 

available. The GHOST software is a collection of C++ classes that provide a scene graph 

interface to working with the PHANTOM. It does of most of the low-level work required 

to operate the PHANTOM, including the creation and maintenance of a separate haptic 

process to control the motors and keeps the force update rates within the proper range 

[10]. The newer OpenHaptics toolkit provides a high level interface to haptics 
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programming with a structure similar to the OpenGL API. Written in C++, OpenHaptics 

also provides routines for lower level device control [11].  

 

2.1.2 The CyberForce 

 The Immersion Corporation provides a number of haptic devices designed around 

an exoskeleton for the users hand known as the CyberGrasp. This allows forces to be 

applied to each finger individually to simulate grasping and holding [12]. The 

CyberGrasp is operated from a backpack worn by the user, making the device portable. 

 However, the CyberGrasp alone is limited in that it does not allow the user to feel 

weight, mass, or forces against the entire arm. To remedy this, the CyberForce is offered. 

It combines the CyberGrasp exoskeleton with a large PHANTOM-like device that 

provides grounded force feedback for the whole arm. This lets the CyberForce simulate 

grasping and moving objects in a very realistic fashion [13]. A picture of the CyberGrasp 

glove appears in Figure 5.2. 

Figure 5.2. The CyberGrasp glove 

Courtesy of the Immersion Corporation 

 

2.1.3 The DELTA device 

 DELTA haptic devices are provided by the Swiss company Force Dimension. 

They are based on a parallel mechanism design that provides higher continuous forces 
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and stiffness levels than other devices, but at the cost of a smaller physical workspace 

[14]. A number of different DELTA devices are offered, including a 6 degree of freedom 

model [15]. A software toolkit is also provided to customers for controlling and 

programming the devices. The delta haptic device appears in figure 5.3. 

Figure 5.3. The DELTA haptic device 

Courtesy of ForceDimension 

 

2.2 Uses for haptic technology 

 There are a variety of fields that use haptic devices in situations such as design, 

simulation and operation. These range from more traditional areas such as surgery and 

assembly tasks to the more exotic exploration of multidimensional data sets. 

 In the early stages of product design, models, such as automotive body shapes, are 

often created using clay and then developed into a CAD model. Obtaining this CAD 

model is a time consuming and inexact process. As a work around, a "digital clay" 

program that uses the PHANTOM to let designers sculpt clay models on the computer 

with a variety of tools has been developed [7]. SensAble's FreeForm modeling system, a 

digital clay sculpting software package for industrial designers, combines clay's or foam's 

ease of use with haptic feedback and the advantages of a digital model allowing for 

shorter product development times [16].  
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Medical surgery sees several benefits from haptic technology, especially surgical 

training.  Simulators using one or more haptic devices to represent surgical instruments 

not only provide feedback for simulating bodily tissues but can also record the surgeons' 

actions to monitor their skill and progress [17]. Laparoscopic surgery, where the 

surgeon's work is done through small incisions in the skin and guided by images from a 

fiber optic camera, lends itself well to haptic aid. Since the actual surgery is performed by 

watching a computer display, adding haptic feedback to simulator tools with detailed 

physical modeling gives a highly realistic simulation [18]. 

 At Boeing, researchers have integrated a six-degree of freedom PHANTOM with 

their Voxmap PointShell (VPS) collision detection software to create a virtual assembly 

tool. VPS allows a polygonal model to be discretized into a collection of voxels, which 

can be used as the basis for a very fast collision detection algorithm [19].  This allows for 

the dynamic manipulation of a detailed rigid object within an environment whose 

complexity is only limited by computer memory, all while maintaining haptic update 

rates [20].   

 Rakesh Gupta et al developed a design for assembly analysis tool called the 

Virtual Environment for Design for Assembly or VEDA to investigate the effectiveness 

of virtual assembly simulations. Haptic feedback using two PHANTOMs, physically 

based modeling, accurate collision detection, and sound cues all provide a realistic virtual 

assembly experience. Tests compared the task completion times for an actual assembly 

process and an identical virtual assembly process. Results indicated VEDA assembly 

times correlate with actual assembly times as task difficulty increased, though all virtual 

task completion times were roughly twice as long [1].   

 To help make virtual assembly a more practical design tool, Howard and Vance 

present an assembly application that uses desktop VR with physically based modeling. 

The Open Physics Abstraction Layer is used to provide a stable physics backend while 

the PHANTOM Omni gives effective, low cost haptic feedback for mechanical assembly 

[21].  

 Haptics technology is also common in dataset visualization. Avila and Sobierajski 

explore the use of a PHANTOM with haptic feedback as an input and output device for 
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exploring complex three-dimensional data. They report haptic integration gives the user a 

more intuitive method to understand and alter such data [2].   

 Researchers at Iowa State University have been working with a haptic enabled 

device called the Reachin Display for interaction with and display of 3D data. Their work 

takes advantage of the additional feedback available through haptics and sound to aid 

environmental planning within a Geographic Information System. Their goal is to use 

this additional information to guide users to an optimal solution in the planning process, 

similar to the goals set forth for the IVDA in this paper [22]. The Reachin Display by 

Reachin Technologies uses a PHANTOM haptic device and a semi-transparent mirror to 

produce a co-located display where a user sees and feels an object in the same location 

[23]. A Reachin Display appears in figure 5.4.  

Figure 5.4. The Reachin Display 

Courtesy of Reachin Technologies 

 

2.3 Networked haptics 

 One of the primary concerns with haptic feedback is the device update rate 

necessary for realistic feeling. While computer graphics images only need to be refreshed 

roughly 30 times a second (30 Hz) to appear smooth to the human eye, the sense of touch 

feels vibrations up to 1000 Hz [17]Thus haptic devices must have a control loop that 

updates nearly 1000 times a second to prevent the user from sensing unwanted vibration. 
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This order of magnitude difference between visual and haptic refresh rates limits the 

number and complexity of the models haptic displays can currently handle.  

 Most haptic devices are run in a separate haptic process or thread, which runs at 

roughly 1000 Hz. To ensure these high refresh rates, the haptic process may be run on a 

separate processor or computer [24]. This is typically referred to as networked haptics, 

and it is an area of ongoing research. Networked haptics are especially important in 

software such as the IVDA, where a cluster of computing nodes drives the application. 

Due to the computational stress of a haptic simulation, and the desire to load balance the 

cluster, it makes sense to have a separate computer devoted to the haptic device. 

Networked haptics is thus an important consideration for this work. 

 Kim and Vance demonstrate a method whereby a haptic device's control is 

executed on a separate haptics computer, which is networked to the computer(s) driving a 

virtual assembly simulation. The goal is to develop distributed networked haptic 

environment where multiple users with different haptic devices may work collaboratively 

in the same virtual environment [25].  

 The effects of network lag on a haptics simulation are important, especially for 

collaborative applications. Boukerche et al analyze the effects of lag on simulation 

performance and present a predictor algorithm to minimize said effects [26]. Similarly, 

Hikichi et al demonstrate the sensitivity of haptic applications to network packet delay 

and/or loss [27]. They use prediction and interpolation to smooth over such errors, and 

then gradually correct back to the proper values as they arrive. Such predictor corrector 

algorithms are shown to be an effective aid in maintaining a smooth simulation when 

using networked haptics. 

 

2.4 The Immersive Virtual Design Application 

 The IVDA is a C++ program written to use the VR Juggler software library 

developed at Iowa State University's Virtual Reality Applications Center. This permits 

the application to run on a number of virtual reality devices including the Linux 

workstation cluster currently being used [28].  
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Originally, this work used simple linear Taylor series approximations based on 

pre-computed stress sensitivities to allow a user to change the shape of part and see the 

stress patterns change interactively [29]. This process was limited by the low accuracy of 

the Taylor series stress approximations for large design changes and the need to perform 

a full stress and sensitivity analysis before any sort of interaction could begin. The 

method also required the portion of the model marked for shape change to be identified 

beforehand, limiting designer freedom. 

 The next stage was applying these techniques to a practical engineering problem 

in a projection screen virtual environment. In particular a tractor rear lift arm experienced 

excessively high stress levels while in use, but designers found it difficult to alter the 

shape without interfering with the rest of the complicated lift assembly. The virtual 

environment with real time stress approximations made it easy to explore the arm design 

and find a shape that lowered part stress to acceptable levels while avoiding interference 

with the assembly [30]. 

 Further improvements were provided by Chipperfield, Yeh and Vance with a 

mesh-free method and a fast reanalysis technique. A reproducing kernel mesh-free 

method with strain smoothing stabilization was implemented to compute the analysis 

results [31]. This helped reduce analysis errors arising from mesh distortion as the part 

shape is changed, and avoids the computationally expensive re-meshing process. The fast 

reanalysis uses a pre-conditioned conjugate gradient (PCG) method to rapidly resolve the 

system of equations arising from the mesh-free analysis. By using the factored stiffness 

matrix from the previous analysis, the PCG method can quickly solve the system for the 

deformed part shape [32].  

 In order for a user to arbitrarily choose what portions of the model geometry to 

change, a form of Free form deformation base on Catmull-Clark subdivision volumes 

were implemented [33]. By placing a series of control points in the 3D space surrounding 

the part, the designer creates a subdivided volume that embeds the model. A designer in 

VR need only grab and move these bounding volume control points to change the 

underlying part shape. 
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To make the application applicable to a wider range of problems, Fischer and 

Vance integrated an external analysis program called Tahoe to perform the mesh-free 

analyses. Tahoe is a "research-oriented, open source platform for the development of 

numerical methods and material models" that places special emphasis on solving 

problems not treated well by standard continuum methods [34]. After testing to compare 

speed and accuracy with the already implemented custom mesh-free analysis, a Tahoe 

module was built for the IVDA that makes it the default analysis option.  

 Stress sensitivity calculation is an important part of the IVDA, since it provides 

the basis for the Taylor series stress approximations, and it can take up a substantial 

amount of computation time to produce. To improve both the speed and accuracy, 

alternative methods were compared from design sensitivity analysis literature to fine a 

suitable replacement for the finite differences technique being used. A discrete 

derivatives method with exact numerical differentiation was implemented and shown to 

be a great improvement, especially for larger models. A photograph of a user within the 

IVDA appears in figure 5.5 below. 

 

Figure 5.5. A user working with the Immersive Virtual Design Application 

 

With the IVDA in the state outlined above, haptic feedback was added to provide 

additional information to a designer working with the application in the virtual 

environment. Decisions were made based on the information obtained from the haptics 



www.manaraa.com

84

literatures and the design and intended use of the application. The process is detailed in 

the next section.  

 

3. Implementing haptic feedback 

 Selecting a haptics device was the first step. The three types of devices discussed 

above were all considered candidates since they are commercially available, they are 

actively supported, and they come with a documented software API for programming.  

 

3.1 Device selection 

 The primary requirement for a device with the IVDA is the intended use in a 

projection screen virtual environment.  The difference in physical workspaces needs to be 

addressed, since the above haptic devices operate on the order of a cubic foot of space 

while the virtual environment is a 10x10x10ft cube. A method for doing just this is 

presented in [35], which maps the haptic device workspace to an arbitrary portion of the 

virtual environment defined by the operator. Still, the larger a haptic device's workspace 

the more intuitive it is expected to be for a user in the environment.  

 Another factor to consider is the "strength" of the device; how much force it is 

capable of simulating for the user. A stronger device provides a potentially wider range 

of feedback for the user, up to safe limits of course. Device stiffness is an indicator of 

how rigid the device resistance will feel to the user. More rigid is considered more 

desirable, as it makes for a more believable simulation. 

 It also makes sense to avoid 6 degree of freedom haptic devices when the less 

expensive and less complex 3 degree of freedom devices will suffice. The rotational 

degrees of feedback would be wasted as the IVDA only supports the translation of 

bounding volume control points to deform model geometry. This also effectively 

removes the CyberForce device from consideration, as it is similar to one of the large 

PHANTOM models, but with the extra glove attachment that is not expected to be useful 

when working with the IVDA. 
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The two devices selected for comparison were the largest and strongest offered 

from SensAble and Force Dimension. Their rankings appear below in Table 5.1. 

 

Device Max 

Force(N)

Continuous 

Force (N) 

Stiffness 

(N/mm) 

Workspace 

Total (m3)

PHANTOM 

3.0 

22 3 1 0.2 

Delta 

Device 

>20 20 14.5 0.031 

Table 5.1. Comparison of haptic device characteristics 

 

The above comparison shows that while both devices may have similar peak 

forces, the Delta has a much stronger continuous force. The delta is also much stiffer than 

the PHANTOM, due largely to its unique design. The PHANTOM, however, possesses a 

much larger total workspace, which became the primary factor for selection. 

Additionally, the authors have previous experience with a smaller PHANTOM device. In 

light of these factors the PHANTOM 3.0 was selected for implementation.  

 Choosing a PHANTOM device also presents the unique choice of a haptics 

software API to work with. Currently two different API's are provided as an option: 

GHOST and OpenHaptics. This choice is an important one, since they provide different 

paradigms for interacting with the PHANTOM. 

 GHOST is the original PHANTOM software. It a series of C++ classes that 

provide a scene-graph structure for working with a haptic scene, and is designed for 

developers with an advanced knowledge of haptics programming. OpenHaptics is the 

more recent API. It is patterned after the OpenGL graphics language, and applies similar 

concepts to haptics programming. It was designed to be easy to learn, as well as 

providing low level device control for advanced developers. 

 For this work, the OpenHaptics API was selected. It provides a lot of flexibility, 

and has seen rapid growth in use since it's introduction. It is also more aggressively 
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pushed by SensAble, including academic downloads of the software, which would 

indicate it to be the preferred and possibly more likely to be supported API in the long 

run. 

 

3.2 Integration with the IVDA 

 Adding networked haptic feedback to the immersive application requires an 

interface for the device to send and receive information. Keeping the amount of data 

transferred between the main simulation and the haptic computer to a minimum is a big 

priority, so the decision needs to be made on just what information the haptic simulation 

needs.  

 

3.2.1 Network traffic between simulations 

 Though the designer views the complex geometric model in 3D space, he/she 

only interacts with that model directly through the placement and manipulation of the 

bounding volume control points. The model itself is physically transparent to the user. 

This means the haptic simulation only needs to be aware of the bounding volume control 

points for manipulation and the bounding volume defining the haptic workspace in the 

virtual environment. 

 To produce a feedback for the user the haptic simulation needs an awareness of 

the stresses (or some other parameter) within the model. However, the haptic device itself 

is only capable of 3 degree of freedom feedback. This means the most information the 

haptic device can display at any single instant is a 3 dimensional vector, produced by 

some algorithm that takes into account the state of the model, which could be run on the 

immersive application side.  

 This short analysis indicates the only information we need to share over the 

network with the device is a series of 3 dimensional vectors for the positions of the 

various control points and the feedback driving the haptic device. Also note the positions 

of all control points only need to be sent once when the haptic device is started. While 

operational only the change in control point positions for the manipulated points needs to 
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be shared. Network traffic can thus be kept to a minimum, and an interface between the 

simulations may be designed. 

 

3.2.2 Additions 

 The immersive application is a collection of C++ modules that interact with each 

other via specific methods. The core uses VR Juggler to drive the simulation in the virtual 

environment. Other modules deal with model data, file I/O, free-form deformation, mesh-

free analysis, design sensitivity analysis, and Taylor series approximation for stresses. 

This design lets modules be swapped in an out, such as using Tahoe for the mesh-free 

and design sensitivity analysis in place of the custom mesh-free implementation.  

 Interfacing with the haptic computer was done by adding a specialized haptic 

controller module. This module communicates via TCP/IP data transfer with the haptic 

simulation computer. The haptic controller sets up the simulation by formatting and 

sending the locations of all control points from the model manager to the haptic 

computer. It then monitors for updated control point positions and passes those positions 

back to the core application to cause deformations. As the model shape changes, the 

haptic controller uses an algorithm to convert the changing stress state into a value to 

return to the haptic device for feedback.  

 The haptic controller is also an optional component. If no haptics are used, it does 

not need to be loaded or even compiled into the application. Figure 5.6 below shows a 

diagram of the IVDA application and the haptic controller module.  
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Figure 5.6: The haptic controller module in the IVDA 

 

3.3 The haptic server 

 On the dedicated haptic computer, a program called the haptic server was written 

to control a haptic device and communicate with the IVDA simulation. This lets the 

haptic computer dedicate itself to driving the haptics and keeping update rates high. The 

haptic was written using the OpenHaptics API to control the PHANTOM 3.0.  

 The haptic server is actually started before the IVDA simulation. It simply waits 

for a connection from a client, the haptic controller. Once connected it receives data and 

parses it for the PHANTOM, setting up control points and workspace bounds. When the 

haptic simulation starts, the haptic server relays control point translations to the IVDA 

and receives the user feedback information. This feedback is converted into a parameter 

meaningful to the PHANTOM.  

 Since the haptic server only updates the feedback when new information is 

received from the simulation, the PHANTOM servo loop may run as fast as possible. If 

the change in feedback levels substantial, a linear interpolation may be used to smoothly 

apply the new forces to the haptic device, as in [27]. A graphical representation of the 

haptic server communicating with the IVDA’s haptic controller and the PHANTOM 

appears in figure 5.7. 
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Figure 5.7. The haptic server 

 

4. Model state to haptic feedback correlation 

 The described work permits the IVDA to work with a PHANTOM haptic device 

for feedback based on the changing stress state of the model being altered. There are two 

missing steps to this process: 1. Deciding just how to actually convert model stress 

information into a single scalar or 3 dimensional vector for the haptic feedback. 2. 

Finding a way to apply this feedback in a way that is meaningful to the user. 

 

4.1 Model stress conversion 

 Converting the model's changing stress pattern into a value for the haptic device is 

a highly empirical process. The goal is to produce a "feeling" for the user that conveys as 

much information about the stress state as possible, so a large amount of testing is 

expected.  

 Each mesh-free node (or "element") has a stress tensor associated with it, and a 

model typically has thousands of elements. The IVDA allows the user select one of 

several different stress states to view, such as Von-Mises or maximum shear. This 

provides a scalar value for each element.  

 The next step is to come up with a sort of "average" value to send to the haptic 

device. The most straightforward technique is probably the global mean of all stresses in 

the model as per equation 1. 
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Here γ is the haptic feedback value (here simply the mean stress), σVM the Von-Mises 

stress per element, and N the number of elements in the model. The disadvantage of this 

approach is the expected insensitivity to design changes, especially when smaller portions 

of the model are being changed.  

 A weighted mean is another possibility, where the stress values are weighted in 

some way by the stress sensitivities used in the Taylor series approximation. This should 

cause the areas being deformed to have a greater effect on the haptic feedback. This also 

removes the effect of stresses in areas not being deformed from the haptic feedback. Such 

a weighting is shown in equation 2. 
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Here h is the average value of the stress sensitivities for each element, computed for the 

three coordinate directions x, y and z. 
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A third option is to provide a different level of haptic feedback for each 

coordinate direction. This might be accomplished in a manner similar equation 2, except 

we would have a weighted mean for each coordinate direction. This would also require 

returning a feedback vector to the haptic device instead of a scalar.  

 The last step before sending feedback to the device is to map it to some sort of 

range or scale. A value for haptic feedback needs to be seen within the context of a 

maximum and minimum to be meaningful. The minimum and maximum values used 

depend on the averaging method. For the first, the simple global average, the minimum 



www.manaraa.com

91

and maximum stresses in the model is used. For the second (and third) the minimum and 

maximum of the stress times sensitivity value is used.  

 Finally, the feedback value(s) are mapped from 0 to 1 for convenience, where 0 is 

no feedback and 1 is the maximum feedback the haptic device is programmed to provide. 

Equation 4 presents this mapping, where hapticγ is ranges from 0 to 1 and minγ , maxγ are 

the minimum and maximum as determined above. 

 

minmax
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γγ
γγ

γ
−

−
=haptic  eq. 4 

Note that if we are using different feedback for each of the 3 coordinate directions, hapticγ

becomes a 3 dimensional vector instead of a scalar.  

 

4.2 Haptic feedback representation 

 Once a value is generated to send to the haptic device, the second step is deciding 

just how to provide the haptic feedback on the device. At a higher level, haptic devices 

are typically used to provide two broad types of feedback: force/resistive feedback and 

vibration or tactile feedback.  

Earlier, the PHANTOM 3.0 was selected for this work. It is designed mainly to 

produce whole-arm force feedback, so that type was selected. Ideally this will let the 

haptic device “guide” the user to a more optimal solution by making motion is some 

directions easier than in others.  

Next, a method of applying the force/resistive feedback needs to be determined. 

The Open Haptics toolkit provides some examples of force feedback models that were 

considered. Consider the standard mass-spring-damper system, which appears in equation 

5.  
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Here m is the mass, b the damping constant, and k the spring constant. The feedback 

value could be used to adjust any one of these parameters.  

Practically, the mass m was discarded altogether because it would depend on the 

acceleration, or how rapidly the user changed moving the PHANTOM about. It gives the 

feeling of a weight being attached to the end of the device. This leaves the damping 

constant and the spring constant.   

Adjusting the damping constant b generates a viscous, friction like effect to resist 

the motion of the user. As hapticγ ranges from 0 to 1, b is ranged from 0 to a some 

maximum value determined by experiment with the device. Too high of a value produces 

forces large enough to shut the PHANTOM down.  

The stiffness constant k gives a direct spring force to resist motion based on the 

position of the device. Varying this value changes how difficult it is for the user to move 

the device, and hence deform the model.  A suitable range of k is also determined by 

experiment with the device to avoid excessive force levels.  

 With no clear way to prefer one force rendering method over another, both 

choices were implemented in a small pilot study designed to help determine how useful 

haptic feedback is to a user working with the IVDA. Details of the study are presented in 

section 5.  

 

5. Pilot study 

A small pilot study was setup and run with a two-fold goal: 1. determine if a user 

of the IVDA perceives any benefit from force feedback tied to the stress levels in the 

deforming models and 2. see if there is a user preference between spring force feedback 

and friction or damping feedback. This was designed as a precursor to a larger scale user 

study on the effectiveness of the various stress to haptic feedback mapping techniques. 

For this pilot study, the simple stress averaging technique was used.   

 

5.1. Setup 

 A total of eleven users participated in the study, each with varying levels of 

computer usage experience. Video game use was questioned as well, since that was 
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expected to have an impact on the user’s willingness to experiment with the haptic 

device. Each participant was given a pre-study and a post-study questionnaire. 

 Users had the application explained to them, they completed the pre-study 

questionnaire, and were then placed in front of a sample version of the IVDA. This 

simplified version had a simple beam model already loaded with a bounding volume 

defined, control points selected for deformation, and stress sensitivities computed. The 

tests were performed with a desktop VR setup instead of the intended immersive display 

for simplicity. Users wore goggles to provide stereo vision.  

Participants were asked to deform the model with the haptic device for both 

spring and friction feedback. Users also had the chance to work with two different haptic 

devices, a small PHANTOM Omni and the larger PHANTOM 3.0 which the application 

was designed for. The post-study questionnaire was then completed. 

 

5.2 Results 

 The first result of interest from the study was the type of feedback users preferred. 

The overwhelming choice was the spring force. The friction force was rejected by all. 

One user thought the force interfered with deforming the model, and another had no 

preference. A simple graph of these results appear in figure 5.8.  
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Force feedback type preference
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Figure 5.8. Comparing the different types of force feedback 

 

The second result was to determine a preference for haptic devices. It was 

expected the 3.0 would be preferred over the Omni due to it’s larger strength and size. 

This was indicated by the study as well as figure 5.9 shows. 

 

Haptic device preference
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Figure 5.9. Comparing two different PHANTOM devices 

 

This simple study was helpful in reinforcing the choice of the PHANTOM 3.0, 

and in deciding to use the spring force feedback model for further work with the IVDA.  

 



www.manaraa.com

95

6. Conclusions and future work 

 Haptic feedback based on the changing stress levels in a deforming model was 

added to the Immersive Virtual Design Application. An overview of haptic devices and 

uses was presented, with an emphasis on networked haptics. Haptic feedback was 

implemented with the existing IVDA and several mappings from model stress state to 

haptic feedback developed. A simple pilot study was run to evaluate the different types of 

haptic feedback available to users of the IVDA to determine the most effective.  

 Future work would focus on the implementation of a larger scale user study to 

compare a number of different stress mappings for haptic feedback. Combined with the 

PHANTOM 3.0 and spring force feedback, this future study should be used to determine 

the most useful way to couple haptic feedback with the immersive design application.   
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CHAPTER 6.  SOFTWARE ENGINEERING FOR INTERACTIVE 

DESIGN 
 

Working with the interactive virtual design application as a research project 

necessarily involves a lot of software work, both in design and programming. One needs 

to keep the goals of the IVDA in mind when improving and extending it’s functionality, 

namely that it remain fast and modular. This section discusses the software engineering 

aspects of the work described so far. 

The application and all of the major external software it uses, VR Juggler, 

OPCODE, SuperLU and Tahoe, are written in C/C++, mid-level programming languages 

that provide both speed and flexibility. However, this power comes at a price, as these 

languages don’t provide garbage collection or much protection from programming and 

memory management mistakes. Keeping track of memory is extra important in an 

analysis application, since larger models can use up a good portion of the available 

system memory; memory leaks will quickly kill such a simulation. 

 

1. Simulation speed 

A key feature when working in Virtual Reality is that the simulation maintain 

real-time update rates. As stated, that is typically assumed to be around (1/15th) of a 

second, since below that level the simulation generally seems smooth to the human eye. 

Any time the update rate gets slower, the user will notice and the immersive effect will 

degrade. This update effect not only applies to the visual update rate, but to the user’s 

control as well. If a model being moved by the user doesn’t update its position quickly 

enough, it will drastically affect the experience. 

 This means any action that must take place in real-time, such as deforming a 

model and seeing the stress pattern update, has to be fast. That is why the linear Taylor 



www.manaraa.com

100

Series stress approximation is used even though it’s poor for anything other than small 

design changes. Speed here becomes more important than accuracy, as the project’s goal 

is to help designers gain an intuitive feel for how their shape changes affect the analysis 

results. If more accurate results are desired, they should be analyzed for in a separate 

thread. 

 Threading, the running of multiple execution processes, is an essential part of the 

IVDA. One of the worst experiences for a user in VR is to have the simulation freeze. 

They lose all sense of immersion, and either become frustrated or quickly assume the 

application has failed. Any task that requires a substantial amount of computation, such 

as a full mesh-free analysis, stress sensitivity calculation, or even loading a complex 

model, must be launched in a separate thread so the application continues to respond to 

user input.  

 Fortunately VR Juggler provides a built-in interface, VPR, that helps make 

threading more straightforward. The designer must ensure that the application itself is 

thread-safe, so that multiple functions don’t attempt to modify the same data at the same 

time. It also pays to be aware of the types of threads created. On multiprocessor systems, 

such as SGI workstations, certain threading models may automatically spawn on different 

processors, which helps load balance the application. Others will always thread on the 

same processor.  

 

2. Distributed computing 

 Currently, running an application in a large projection screen virtual environment 

usually means it is using one of two types of systems: 

1. A large, multi-graphics pipe, shared memory parallel computer 

2. A distributed cluster of high end PC workstations 
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Both present an opportunity for parallel processing, where a computationally intensive 

task is split up among multiple processors for a faster solution time and more efficient 

use of computational resources.  

 The large shared memory computer is becoming less common today due to the 

increasing power of PC graphics cards and their much lower cost. This means any 

parallel computation done with the IVDA is likely to be the distributed memory type, 

where each computer (or node) has it’s own copy of any data. Distributing this data well 

is important for an efficient parallel calculation.  

 VR Juggler has methods for sharing information across a cluster with the 

ApplicationData interface. It provides a low-level way to divide data up among the 

different nodes. At a higher level, the Message Passing Interface, MPI is a software 

library used to send information across computing clusters. The IVDA can use MPI in the 

analysis matrix assemble and solve steps if desired. Additionally, both Tahoe and 

SuperLU permit distributed parallel processing for a number of routines, especially when 

solving systems of equations, all using MPI for the actual data distribution.  

 However, distributed parallel processing should not be blindly applied in every 

case. Often when using the IVDA, the models under consideration are small, ranging 

from several hundred to a few thousand elements. In those cases the additional time 

required to distribute the data and gather the solution across the network can outweigh, or 

at least minimize, any speed benefits gained from parallel processing. This is especially 

true when the cluster is connected with a lower speed interconnect such as 100BaseT 

networking, as may often be the case with VR clusters. 

 Lastly, it pays to remember that in a typical projection screen VR environment the 

simulation cluster and the computation cluster (say for solving large finite element 

problems) are one and the same. Even when parallel processing each node is still running 
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the virtual environment at the same time. Keeping the user immersed in the virtual 

environment should be the most important task. 

 

3. Optimization 

 Optimization of computer code, as opposed to optimization of mechanical design 

problems, is another important step. Several software tools were used with the IVDA to 

help profile the application to determine which routines were the most computationally 

expensive.  

 On SGI systems, the Workbench suite of tools provides an in-depth profiler that 

was used to determine the slowest portions of the stiffness matrix assembly routines. This 

information helped speed the assembly process up by a factor of two in the original 

mesh-free solver. When working with Linux, as is typically found on cluster VR systems, 

the GNU gprof profiling tool is used. Gprof generates several pieces of  information 

including a “flat profile” of how much time was spent in each function, including the 

number of time it was called, and a “call graph” of which functions called which. This 

information helped optimize the discrete derivative calculation within Tahoe. 

 Less fancy, but no less important, than profiling is keeping some basic rules of 

efficient computing in mind. When possible, arrays should be accessed as they are 

contiguous in memory. This can provide a substantial performance increase, and is 

especially important when doing many linear algebra operations, such as those found in 

the IVDA. It is also wise to pre-compute and store as much information as possible. In 

mesh-free methods, a substantial amount of data may be stored and used later in this 

fashion.  

 Lastly, there is the issue of data translation. Trying to make the immersive design 

application generally useful means being able to work with geometry from a variety of 

sources. Model format converters were written to move between ABAQUS input, Tahoe 
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data, EXODUS, and the mesh-free model file formats. These converters also make it 

possible to reanalyze deformed models reached through using the IVDA with other 

analysis software.  
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CHAPTER 7.  SUMMARY AND FUTURE WORK 
 

This research demonstrated the use of virtual reality and related interaction 

technology, such as haptics, in an immersive virtual design application. The goal was to 

present an effective methodology for interactive design where engineers alter products 

and investigate updated analysis results in real-time using a virtual environment. 

Research was presented as a series of four papers. 

Chapter 2 covered a history of the interactive design methodology and it’s 

applications followed by the largest hurdles to effective interaction. Solutions where 

presented and their effectiveness demonstrated. 

The third chapter examined some limitations of the custom mesh-free analysis 

method used on the application. A search was performed for suitable replacement 

software with an emphasis on Open Source applications. The Tahoe program was 

selected, tested against the custom implementation, and integrated with the application. 

In Chapter 4 the calculation of shape design sensitivities for stress approximation 

were examined. Limitations of the existing finite differences technique were explained 

and a search of available techniques was made. After considering discrete derivatives, 

continuum derivatives, and automatic differentiation, and discrete derivatives approach 

with exact numerical differentiation was selected, implemented, and tested. Results 

indicate the discrete derivatives approach to be a fine replacement. 

Chapter 5 considered the use of haptic or force feedback as an additional channel 

of information for the designer. Several haptic devices and their uses were examined, and 

a PHANTOM 3.0 was selected for use with the immersive design application. Networked 

haptic feedback was added to the application and several techniques for mapping model 

stress state to device forces were investigated. Finally, a simple pilot study was 

conducted to help determine which feedback styles were considered most useful to a 

potential designer. 

The area with the greatest potential for future work would seem to be the use of 

haptics as a design tool in the application. A proper user study should be conducted to 

sort out which stress-force mapping techniques are the most effective for a designer. One 
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should also try to determine just how useful the additional haptic feedback generally is 

when working in the virtual environment. 

A second area worth investigating further is the use of automatic differentiation 

routines for the computation of shape design sensitivities. Throughout the course of this 

research automatic differentiation has made many improvements. With programs as large 

as 400,000 lines and more now being completely differentiated, it appears to be fast 

becoming a practical analysis option. This would also make implementing additional 

types of sensitivity analyses much more straightforward, and would be a powerful 

addition to the methodologies of interactive design in virtual reality. 
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